AUTHOR	Smith, Carol; And Others
TITLE	Promoting 6th Graders' Understanding of Density: A
	Computer Modeling Approach. Technical Report 86-5.
INSTITUTION	Educational Technology Center, Cambridge, MA.
SPONS AGENCY	Office of Edracational Research and Improvement (ED),
	Washington, DC.
PUB DATE	Jul 86
CONTRACT	400-83-0041
NOTE	123p.; Contains some broken type which may not
	reproduce well.
PUB TYPE	Reports - Research/Technical (143) --
	Tests/Evaluation Instruments (160)

EDRS PRICE DESCRIPTORS

IDENTIFIERS
MF01/PC05 Plus Postage.
Chemistry; *Cognitive Development; *Computer Assisted Instruction; *Computer Software; Computer Uses in Education; Earth Science; Educational Technology; *Elementary School Science; Grade 6; Intermediate Grades; Misconceptions; *Physical Sciences; Physics; Science Education; Teaching Methods *Density

Abstract

The concept of the density of a material has an important role in elementary and secondary school science curricula, but it is a difficult concept to grasp. This project explores why this should be and whether there are some simpler, more accessible notions which can serve as the basis for building a concept of density in students' minds during the later elementary school years. The study explores the effectiveness of using computer models to help students build an understanding of density. This teaching strategy proved to be moderately successful with sixth graders. It was found that the majority of students did correctly assimilate this model in a way that supported their understanding of density as an intensive quantity and that they were able to articulate some relevant differences between weight and density. It was found that this distinction was necessary for children to have success at ordering by relative densities and in understanding a phenomenon such as sinking and floating. Appendices supply a description of the computer programs, worksheets, lesson plans, and interview instruments. (CW)

[^0]
PROMOTING GTH GRADERS" UNDERSTANDIMG OE DENSTTY :

A COMPUTER MODELING APPROARH

Technicel Remport

Ju1Y 1986

Harvard Graduate School of Education
337 Gutman Library Appian Way Cambridge MA02138

Promoting Gen Graciers' understanding of Density: A Compurer Kodeing Approach

Technicai Report Juiy 1986
prepared by Caroi Smith, Joseph Snir, Lorraine Grosslight, and Kicheline Frenetre

Weignt, Density and Maṫer
Grous Mempers
Micheiine Frenette
Lorraine Gross:ight
Maxweli Katz
Grace Leblanc
Raiph Madsen
William Radomsiki
Judian Schwartz
Carol Smith
Josepn Snir

Preparation of this report was supported in part by the fīince of Ecucational kegearch and Improvement (Contract \# OERE 400-83-004:). Opinions expressed herein are not necesaarily shared oy OEÃ anc do not represent Office poilcy.
Chapter 1
Introduction i
Chapter 2
The Computer Programs 3
Chapter 3
The Pilot Study 3
Chapter 4
The Teacining Study 17
Chaperer 5
Some Thoughts on Next Year's Teaching 43
Feferences
Appendices

CHAPTER I

INTRODUCTION

The concept of the density of a material has an important role in elementary and secondary achool science curricula. Teachers have reported, however, that density is a difficult concept for even high school students to grasp. Our project explores why this should be and whether there are some simpler, more accessible notions which can serve as the basis for building a concept of density in students' minds during the later elementary school years. In particular, we are exploring the effectiveness of using computer models which visually depict size, weight, and density as distinct quantities, in helping students build an understanding of density. We have also extended the computer models to allow students to do simulations of sinking and floating experiments in a microworld in which the densities of materials are directly visible. Our long term goals are so investigate whether a modeling approach helps students build both a good qualitative and a good quantitative understanding of density as an intensive property of material kinds. We are also concerned with developing students' metaconceptual understandings of the role of models in sc:ience.

In our earlier work (Smith, Nov. 1984, June, 1985), we conducted two pilot studies designed to investigate the feasibility of using computer based models with elementary school children to build their understanding of density. We developed two different computer models for representing information about size, weight, and density. In the first model, weight was represented by the total number cf dots in a rectangular shape, density was represented by the crowdedness of the dots, and size was represented by the total area of the shape (see Figure 1a, next page). In the second model, weight was represented by the total number of dots in a rectangular shape, density by the number of dots in a cluster, and size by the total number of clusters in a shape (note: the clusters were evenly spaced, see Figure 1 b). We then investigated whether children could mcre readily think about the inter-relations among the three quantities depicted in the computer model than the quantities of size, weight, and density inferred from handling real materials. We found both these computer models encouraged children to think about the variables in question more quantitatively. However, children had difficulty correctly quantifying overall crowdedness, as presented in the first model, making it doubtful that it was a useful model for our purposes. The second computer model, however, was readily understood, and children showed a more sophisticated understanding of the inter-relationship among the quantities when dealing with this model rather than with real world objects. We concluded, then, that building a full-scale teaching intervention around the second type of computer model had genuine promise.

The work of the Weight/Density project this year has been in translating that promise into a reality. Several different types of work had to be done in order to develop a full-scale teaching intervention. First, the computer model itself had to be developed in order to make it usable for instruction. The model we had piloted had been static, with

Figure 1
Three Successive Computer Drawn Models Used to Depict Size, Weight, and Density in Our Studies

Figure la) First Pilot Study (Nov. 1984)

Figure 1b) Second Pilot Study (June 1985)

Figure 1c) Model Used in Curreni Pilot and Teaching Study (July 1986)
linited interactive capability, Work at the beginning of the year concentrated on making decisions about what the model should look like and developing a scheme for the interactive process. A first computer program was developed which allowed children to build objects of different sizes and materials, order the objects, change them and view or hide their structure. 1 The new model portrayed objects with a grid and dots representation (ase Figure 1c). In this model, size was represented as number of squares in a grid, density as the number of dots per square, and weight as the total number of dots in a grid. Subsequently, two additional programs were developed which used the basic model to do simulations of sinking and floating experiments. Second, teaching activities and materials had to be developed to use in conjunction with the prograns. In our teaching intervention, we wanted children to have experience working with real world objects as well as with the microworld, so that they could gain a deeper understanding of the phenomena in question and of the meaning of modeling. Third, we needed to pilot our teaching activities with a group of students, in order to find out how they related to our new computer programs and teaching activities and in order to select an age group for our teaching intervention. Finally, there was the teaching study itself, involving an entire 6th grade class in an elementary school in Watertown. Prior to this time, we worked one-ro-one with students during our piiot studies. In our teaching, we made the transition to working with the class as a whole--an important step toward having an intervention which can actually be used by classroom teachers.

In Part I of our Technical Report for this year, we report on these separate activities, culminating in our discussion of the teaching study and its irplications for further work. Chapter 2 degcribes the rationale and philosophy underlying the development of the computer prograns and models. Chapter 3 discusses the pilot teaching study and how it affected our thinking in designing the teaching study. Chapter 4 is the main body of the report and describes the teaching study. This chapter is a draft of a manuscript we plan to submit for publication in the early fall. Consequently it contains a more extensive theoretical introduction to our work than we have provided in this first chapter. Finally, chapter 5 discusses how we plan to revise our teaching intervention in light of what we learned from the present study. The Appendices give more detailed descriptions of the teaching intervention itself and the stimuli used in the interviews.

Part II of the report is a working paper, prepared by Micheline Frenette. In it, she reports the results of an extensive pilot study she did this year designed to explore what features of the computer program may make it effective in helping children apply a concept of denaity to the phenomena of sinking and fioating.

[^1]
CHAPTER 2

the computer program

The computer progrrams we have developed provide an environment where children can manipulate the different elements that play a role in the notion of density and its relation to the phenomena of sinking and floating.

Sinking and floating are rich, interesting and puzzling phenomena. Because they are governed by a limited number of independent variables, it is possible to build a compelling microworld in which children can investigate and learn not only about the specific phenomena, but about scientific inquiry and experimentation as well.

Because we wanted the program to react to user input from the keyboard in a way that would truly simulate the behavior of real objects and liquids, the relevant principles were embedded into the program. In other vords, the computer model is scientifically accurate; the mathematical rules that the computer uses in calculating and portraying experimental results are the same rules that govern the phenomena of sinking and floating. Thus the learner can become familiar with the underlying principles and abstract mathematics of the phenomena through interaction with their dynamic numerical and visual representations on the screen.

In this chapter we describe the relevant concepts and variables, the graphic representations we chose for these concepts, the ways of interacting with these representations on the acreen (the menu options), and the basic activities that the computer program can support.

The Physical Concepts

and their Representation in the Computer Program
In devising a computer simulation, many decisions must be made about what is relevant to represent, how information should be represented and the kind of accuracy which is desirable. In what follows, we discuss the particular choices we made as well as our rationale for such choices. We believe some of these choices and assumptions are important to discuss with students as well if they are to understand how the model corresponds to the real world.

The simulation program we devised deals only with objects in the solid or liquid state, and it assunes constant temperature. (The temperature constraint will be lifted in the future.) Under these conditions, oniy tiree variables--size, weight, and density--are relevant to the phenomena of sinking and floating. Any two of these can be thought of as independent variables, which then determine the third. Usually, we take size and weight to be the independent variables. In the real world, we perceive and take measurements on objects, i.e., their weight and size, and then deduce or infer their density. These two extensive parameters of weight and size define, through a mathematical relation, the intensive quantity of density, which is the center and focus of our teaching effort.

When creating objects or building from materials, we use knowledge of the density of a material to figure out how much an object will weigh. In the computer program, the independent variables are density and size. These are the variables that can be selected and modified. The weight is determined by manipulating these two quantities.

Size

When we speak of the size of an object, the pertinent physical parameter is volume. As a three-dimensional quantity (length to the third power), volume must be represented in a symbolic way on the two-dinensional screen. We decided against designing the program to show perspective and three-dinensionality because we wanted the model to depict only the information that is directly relevant to the phenomena or topic at hand.

In the model, a unit of volume is represented by a two-dimensional square. Hence, there is a simple relation between the volume of an object and the abstracted represention of its aize by the number of square units on the screen. This representation of volume can be used for an object of any shape, so long as one bears in mind that it is a symbolic and not a pictorial representation of size. We are concerned with volume and not with shape. All shapes are reduced to their rectangular (or cuboid) volume equivalents.

Since our main concern is to facilitate understanding of the principles and rules involved in sinking and floating and not to build a tool for exploring every real-life possibility, we have liaited ourselves to a subclass of objects that are well-suited to our current purpose. For the time being, we have also limited the objecta to homogeneous rectangles in their screen appearance; these rectangles stand for three dimensional objects, with the unseen dimension held conatant.

The sinking and floating program shows two-dimensional representations of solid objects as well as of liquid in a container. The assumption is that both the object and the container of liquid, in three dimensions, would extend back away from the screen to the same extent. Of course, in real life, the object and container could not be exactly equal in this respect. We chose to ignore this discrepancy, however, because we wanted to keep any and all measurable size (volume) quantities visible and to avoid having hidden liquid or container volume behind the object. When the user gets numerical data, it corresponds directly to what he or ahe sees in the visual representation. Furthermore, this numerical data remains consonant with abstract principles as well as with actual (physical) measurement using suitable containers.

The idea of modeling and representations should be introduced to those involved in any attempt to use computer simulations as tools in science. The model's assumptions (what is relevant, how to best to represent, accuracy and compatibility with real phenomena) should be discussed and nade explicit as well. Even if many of these ideas are not discussed with students, the model builder and the teacher should be aware of them. Clarity about the assumptions built into the model gives users the possibility of modifying or giving up some features as needed or desired.

In our pilot studies we discussed the meaning of size units a bit during class, modeling cubes made of 8 1cc blocks and discussing what was more relevant -- to portray shape or size (\# of blocks). Although we designed the computer program to count blocks but not necessarily to show shape, we may change this or add more options to the program later. In any case, the program can be useful even before the concept of volume is discussed in class.

Weight

From the user's point of vi6s, weight emerges from density, since the user first selects a kind of material and then determines an object's size. The weight of the object is represented visually (in a quantitative and consistent way) by the total numbe:: of dots displayed within the object's perimeter. This is not an atomistic picture of the solid. It allows the concepts of weight and density te be well-defined without any atomistic theory of matter. This symbolia representation could, however, be interpreted later in atomisti, terms. As we now interpret it, esch dot represents one unit of weight. (Later we might interpret the number of dots in a cluster as being proportional to the number of nucleons.) The total weight of an object is thus represented by t_{1}, \ldots total number of dots that represent its weight in some arbitrary weight units.

Derisity

Density is represented as the number of dots in each size unit. This visual representation helps connect the notions of increasing crowdedness with increasing density. Since, at the moment, all objects created in the model are homogeneous, the number of dots per size unit is constant for any given object, thus conveying the notion of density as an intensive property of kinds of materials.

Material Kind

The computer allows users to define material kind in two independent ways: by density shown as dots per size unit or by color. So far we have described the dots per size unit option. When choosing the color option, the representation of weight and density by dots and dots per size unit are not visible. The object is presented as a solid color within its perimeter. Each material is a different color so that materials are distinguished by color, rather than dots per size unit.

In this mode there is no visually accessinile representation of the variables of weight and density, but the specificity of materials is exphasized through another local property, color. The user can switch easily from one mode of representation to the other.

Other Features of the Program
Nuneric Representations
In an effort to give multiple representations for the dimensions of weight, size, and density and to show the link between the visual dispinys
and the values of the variables for each constructed object, the program allows the user to "collecr" data about the size, weight, and density of any object displayed on the screen. When in the data mode, the data are displayed and updated as the user interacts with the program.

Process and Interaction

The program is divided into three parts. The user can move from one to the other through a common menu at any time.

Part 1: Modeling With Dots / Weight and vensity

The first part is designed for manipulating the weight, density, size and shape (as long as shape is rectangular) of up to three different objects in three separate windows on the screen. This can be done in the dots or color mode, with or without displaying the numerical data (see Figure 2, next page). As seen in Figure 2, the student can "Build" an object (in one of three windows) and "Change" its material and size. One defines the object's mode of presentation (dots or color) through the "View/Hide" comand. The "Collect data" comand allows the user to display numeric information about the three variables independently. The user can also "Exchange" objects between windows.

This part of the program thus lets students explore the relationship among the three parameters and perform tasks that involve ordering, huilding, or modeling real life objects according to their different dimensions.
"Modeling with Dots" and "Weight and Density" are actually two versions of the same program. The only distinction between them is found when asking for data. The "Dots" program gives data with the labels "dots", "size units", and "dots per aize unit", while the other version gives data in terms of "weight", "size units" and "weight per size unit." Thus the Modeling with Dots program affords some flexibilit:' in designing activities which can deal with intensive quantities other than density (e.g., number of beads in a cup, number of pennies in a ile).

Part 2: Archimedes

In this part of the program the screen shows two distinct elements: an object of fixed size and a tub of liquid, also of fixed size. Students can perform "experiments" in which the object is immersed in the liquid (see Figure 3). This is a continuation of the first part of the program and enables tisa student to choose and manipulate several elements: (1) the object and the liquid in the container by changing the materials: (2) the nodes of presentation; (3) data collection; and (4) when to perform "experiments".

The results of the experiments are shown visually on the screen. The object submerges to a depth that takes into account the relative densities of the material and the liquid. Liquid displacement follows accordingly. Numerical information about the level of submergence is aiso available.

The experiments can be done with both the objeci and the liquid represented in solsd colors or in the dots mode. Once an object is immersec in liquid, however, it is represented as a solid color. This is to ensure a clear diri inction between object and liquid borders. Even though the object is seen as a solid color, the "View" comand enables the user to view the dot distribution in a small subsection of the object (see Figu=e 4).

Additionally, once an object is submerfed, the rise in the level of the liquid is portrayed 1:i a solid color. Since, in most cases, the increase in liquid level will not, be en integer number of units, we felt $\mathrm{i} t$ best not to complicate the screen diaplay with partial or "open" squares (size units).
"Archimedes" is designed to enable students to explore the roie of an object's and a liquid's densities in defining the outcome of a sinking and floating experiment. The approach we adopted was to keep the size parameter constant, thus concentrating student attention on the density parameter only.

part 3: Sink the Raft

In this part, students can repeat the experiments in the previous section with one additional option. They can, in addition to all the other actions, change the size of the subserged objects and observe the effect such changes have on the outcome of the the sink-float experiments (see Figure 5). The data are continually updated, indicating the size, weight, density, and the porcion of the object submerged as the user experiments. All objects and liquide in this section are portrayed in solid color.

In the future, we plan to gradually lift restrictions frox the system and allow students to explore increasingly complex situations fith regard to: sliepe, homogeneity of material, buat-like objects, waffle-like objects (with holes), and different size containers. We are also considering games which use submarines, mazes, canal locks, and balloons with weighted baskets.

		48 18 4	WEIEST WTE HTHKSU
$\because \square$			
$\because \because \because$			
	\cdots \cdot \cdot \cdot 		
$\because \because \%$	\cdot \cdot \cdot \cdot 		
	\cdots		
$\because \square$		\therefore $:$ 1	
	\cdot \cdot \cdots \cdot	: $: 1:: \%$	
$\because \square \because \square$	\cdot \cdot \cdot \cdot 	: $: 1:$	
	\because \cdot \cdot \cdot	: $: 1: 1::$	
Euild new Chanse	Excharige		i气uノHidg

Figure 2
Screen Dump of the Mudeling with Dots / Weight and Density Program

Figure 3
Screen Dump from the Archimedes Program

山i三い
Eに． 1 リ
ロビうこにち ーはた。

Figure 4．Screen Dump from the Archimedes Program

Figure 5. Screen Dump from the Sink the Raft Program

CHAPTER 3

THE PILOT STUDY

Our previous pilot work (Smith, June, 1985) had shown that elementary school children could work effectively with a computer microworld containing three quantities: the total number of dots in a rectangular shape, the number of dots per cluster in a shape, and the general size or total number of dot clusters in a shape, solving problems using information about two dimensions to predict a third. We also had found that 4th and 6th grade children could solve analogous problems with real world materisls, using informstion about relative size differences of two objects and relative density differences to predict relative weight differences. Although children used more quantitative strategies in solving the compuiter problems than the real world probleas, they showed a conceptual understanding of both types of problems. This result argued that children had at least some qualitative appreciation of relative density differencer. Consequently, before embarking on our present teaching study we needed to pinpoint more exactly the limitations in young children's conception of density, and the age at which an intervention would be most tinely. We also needed to explore how they reacted to our modified computer modei, since in developing our computer model for use in a teaching study, we had made some changes in how the concepts of size and density were represented. Shapes were now composed of a uniform grid of equal size squares; in making a shape one could choose to work with building blocks which contained 1 to 5 dots per square. Size was thus represented by the total number of unit squares in a shape, while density was the number of dots per unit square. Weight was still represented as the total number of dots in a shape. These changes were made to introduce the notion of a unit size more clearly and to allow density to be represented as the number of weight units per size unit. Finally, we needed to see how children reacted to a richer array of probleas with the computer microworld than we had originally piloted: ordering objects according to different dimensions, explicitly using the computer microworld as a model for real world phenomena, building objects in the microworld which satisfied certain constraints, using the microworld to derive certain mathematical rules and to experiment with sinking and floating, and so on. Thus, prior to undertaking a full-scale teaching intervention, we initially did some additional pilot work, working one-on-one with 12 children in the 4 th through 6th grade.

This new pilot study was conducted at the Countryside School in Newton, Mass. We worked with 12 students: 4 each from the 4 th, 5 th, and 6th grades. The homeroom teachers for each grade selected four of their students for us. We asked them to select a diverse group of students (e.g., boys and girls, high and low ability students) and not simply their best students. The teachers complied with these suggestions, especially regarding ability levels, although they tended to select students whom they thought took some interest in science. The children were all from a middle to upper-middle clags background.

Prior to instruction, each student was interviewed to expiore his/hei understanding of the weight, volume, and density of real world
materials. The pre-interview also involved the child in constructing a model to explain the weight differences anong objects. The teaching sessions involved the child in a tutorial with a teacher (a research assistant), in which the child used the computer program and explored reai world materials. Each child received the same work and tasks, but the pacing was tailored to the individual needs of the child. There were two main activity sheets to be covered, which we initially thought would each take a 30 minute session. As it turned out, we usually needed more time to spend with each child (the sessions lasted 45 minutes and some children needed a third session). We also conducted one group session with all four students from each grade to discuss the nature of maps and the kinds of models they had constructed. Finally, half the studenta at each grade level received a post-test similar in content to the initial pre-interview, but with some modifications in how the tasks were presented. The other half went on to try the Archimedes program concerned with sinking and floating. In general, we selected those students who had felt most comfortable with the weight and density modeling program for trying out the Archimedes program.

The Interviews

The pre-instruction interview was designed to cover various aspects of children's knowledge about the concepts of weight, volume, density, and matter/material kind. Because the interview was exploratory in nature, we probed for children's understanding of particular words, their ability to order by the various dimensions, and their understanding of how to measure the various dimensions and to use relevant units for measurement. We wanted to identify both the atrengths and limitations in their understanding of these various concepts, so we could better identify what should be the focus for the interviews and the teaching in the main teaching atudy.

We began by asking children about the weight of objects. Included in our tasks were: (1) judging whether a range of objects, including certain very light objects like a piece of cork and a grain of rice, had any weight and explaining how they knew whether something had weight; (2) ordering a group of objects by weight and explaining the basis for their ordering; and, (3) determining the weight of a particular object, to probe their ability to think about weight quantitatively and their ideas about units of weight.

We next asked children a series of questions about volume. We began by investigating whether they had heard of the word "volume" and if so what they thought it meant. We then gave them a brief definition of volume, and asked them to order a group of objects by their volume or "total size". This was followed by: (1) asking them to find the volume of a particular object, to probe their quantitative underatanding of volume and their ideas about units of volume; (2) probing their understanding of water displacement as a measure of volume; and, (3) giving them some conservation of volume problems, using an abbreviated variant of Piaget's procedure of changing the shape of a piece of plasticene and asking them whether its volune had changed.

Questions about the density of materials followed the questions about weight and volume. We began by showing children two objects that were the same size but different weights (one made of aluminum and one made of steel) and asking them to explain how that could be. We asked then to "pretend we could look inside a small piece of each object, or take a powerful magnifying glass to see how these things are made inside" and then make a drawing of what they thought pieces of steel and aluminum might look like inaide. After that, we asked children if they had heard of the word "density" and what they thought it meant. We gave them a brief definition of density, explaining that different kinds of materials have different densities, and if one material were denser than another, it meant that objects made of that material were heavier for their size than objects made of another material. This is clearly not the scientist's definition, but we thought it corresponded to the way they already thought about the density differences of materials. Thus it was a way of relating a new word to their existing conceptual structure. Students were then asked to order four same size objects made of different materials (styrofoam, wax, aluminum, and steel) according to their density, and then to add two new objects of different sizes but the same materials (steel and aluminum) to the order. This was one way of testing whether they thought that the density of a material did not vary as a function of the amount of material. Their understanding of the intenaive nature of density was also probed in another way: students were shown a steel cylinder and were asked if it were cut in half, would the density of the half size piece be the same as the density of the full piece. Finally, children's ability to think about density differences quantitatively was probed. Children were shown an object made of steel that was one pound and a same size object made of aluminum that was one-third of a pound, and were asked how much denser steel was than aluminum. Two new objects made of steel and aluminum were then produced, and the question was repeated. Of special interest was whether students began by weighing the objects or whether they felt they imediately knew the answer from the previous demonstration.

The pre-interview concluded with some questions about matter and material kinds. Children were asked: whether objects were made of the same kinds of materials, whether if we cut up a piece of aluminum, it would still be aluminum, and whether we would ever get to a smallest piece of aluminum. Similar questions were posed about steel. For children who thought there was a smallest piece of steel and aluminum, we asked in what ways the smallest piece of steel would differ from the smallest piece of aluminum. These questions were designed to probe whether they could think about material kinds at a micro level. We also showed them two objects which were the same size, but made of different materials, and asked them whether the two objects had the same "amount of matter" in them. The same question was repeated for two objects of different sizes but equal in weight. These questions probed whether they had a clear way of conceptualizing the quantity "amount of matter" in their theory and/or recognized the anibiguity in this phrase. Given an atomistic conception of matter, one can distinguish the amount of mass in an object (which is proportional to the weight) from the number of particles of a given kind (which is more closely related to the overall volune of the object).

The post-interview was modified in several ways because, in the course of our working with children, we thought of new ways of probing children's understanding of density and modeling. These modifications, of course, make strict comperisons with the pre-interview impossible. However, our main purpose in the pilot study was to explore ways of asking childre.a questions rather than strictly assessing the effectiveness of our teaching. One set of modifications involved the stimuli used for the ordering tasks. In the post-interview, we included objects of different sizes constructed out of 1 cc cubes of different materials. These new stimuli allowed us to see if children could use the strategy of comparing equal size pieces when making inferences about relative densities. This was a more difficult way of presenting the density ordering task than we had used in the pre-interview. In the pre-interview, children had first been given same size objects of different materials and then had to insert different size objects into their ordering. We wanted to test whether children now had a clear enough concept of density to succeed with this harder task. The other modifications were in how the modeling problems were posed. Children were given several modeling problems. First, they were asked to draw a picture which would "explain" how a 1 cc cube of copper, aluminum, and wood could all have different weights even though they were the same size. Then they were asked to draw a picture which would show how three different size objects all made of copper (a copper cube, a copper rod, and a copper penny) could have different weights but the same density. Finally, we explicitly asked then to use the notation of the computer model to represent similar situations.

The Teaching Sessions

The first teaching session focussed on their understanding of the three quantities in the computer program--total number of dots, total number of squares, and number of dots per square-and rith developing their facility at controlling the commands of the program. We constructed some objects in the windows and asked children to orier them in some way and to explain the basis for their ordering. We then pushed to see if they could find two other ways of ordering them. Finaily, we introduced the three dimensions we had in mind and the data option of the program. Now children explicitly had to order objects according to the three dimensions, and construct objects which would meet certain specifications (e.g., make an object with the same number of size units as this, but with a different number of total dots, or make an object which has the same total number of dots as this object but which uses a different kind of building block). Finally, children were introduced to using the computer as a modeling tool. We first posed some intensive quantity problems for children invcying real world materials (beads per cup or pennies per pile) and asked chilimen to model these probleas on the computer and explain the correspondence they used.

The next session was a group session to discuss the nature of maps and models. Children were shown four kinds of maps of Boston (a subway map, a strast. map, a road map, and a souvenir map) and were asked what each map represented, how it represented it, and whether one map was a "better" map of Boston. Then children were introduced to the idea of modeling in science where it was noted that models were in some ways like maps. A
chart had been drawn depicting some of the models they had produced, as well as a model more consistent with the assumptions of the computer model (although it did not look exactly like it), and we discussed the strengths and limitations of the various models with children. Children were encouraged to think of ways of testing some of the assumptions of each model. For example, if a model explained the lightness of aluminum in terms of the object hade of aluminum being hollow inside, children might auggest cutting the object in half in order to look. Or, if a model explained the heaviness of steel in teras of its dark color, one could investigate whether there were some dark materials (auch as hard rubber) which were lese dense than a lighter colored material like aluminum. The session generally concluded with student's seeing the limitations of some of the models they had proposed, although definitive tests of more atomistic modeis were not done. We did point out, however, that one strength of the atomistic models was that they allowed for quantitative predictions $\dot{d r}$ ways that the other more qualitative models did not.

The third session was again an individual session in which students worked with the computer. The session began with a review of the three basic dimensions of the computer model. We then made a transition by focussing on the crowdedness of the constructed objects, seeing what parameters (if any) would affect crowdedness. (For example: Does crowdedness change when the size of the object changes?) Modeling of real world materials was finally introduced. Children were shown steel and aluminum cubes and asked to make an object out of steel cubes which balanced an object made out of aluminum cubes on the balance scale. After they saw that they needed three aluminum cubes to balance one steel cube, they were asked to represent these objects using the computer. With prompts they were led to make the two objects have the same number of dots (portraying their equivalent. weights) while preserving the size unit relationships. Students were asked if it made sense to have dots stand for weight. They were then given the reverge task: selecting from a range of real world materials, the ones which had been represented on the screen. Finally, we asked some quantitative questions about the relative densities of materials, and pushed children to develop an explicit mathenatical rule relating size, weight, and density.

From a pedagogical point of view, the teaching sessions invoived presenting students with a series of structured problems, and helping then with a series of increasingly guided prompts to come up with the correct answer rather than directly telling them the answer. The whole situation was highly structured, involving problems that had been selected by us, rather than allowing students to explore the program in an open ended fashion.

Our approach in using the Archimedes program was considerably leas structured and more open-ended. Here children were presented with the computer microworld and were essentially told to play with it to see if they could find a rule which would allow them to predict which objects would sink and which would float. There was some preliminary discussion of the meaning of the words "sink" and float". After children had formulated their rule, they were encouraged to test it out with real world objects. They were shown a small piece of wax which floated, and were asked to
predict whether a large piece of wax would sink or float, based on their computer rule. Similarly, they were shown that a large piece of aluminum sank and then were asked to predict whether an aluminum paper clip would sink or float. After they made their predictions, they were allowed to test them. In some interviews, the session concluded with an informal discussion of the problem faced by Archinedes in determing whether the king's crown was genuine gold as, well as some historical discussion of the ken himself. Some students were given a modified version of this problem and were asked if they could tell the real material (clay) from an imposter (ciay with cork hidden inside) by the way it behaved in water.

Observations and Conclusions

Based on our experience working with students in the pilot study, we discovered that students did not have even a good qualitative understanding of denaity as an intensive property of matter. Thus, we decided to focus our attention in our subsequent teaching study on building a good qualitative understanding of density, rather than focusing as heavily on understanding specific units of measurement and mathematical relationships. We also found that atudents could understand the computer es a modeling tool, and work their way through most of the activities we posed, although solving number based problems did not always generate good qualitative understanding of the phenomena. Fourth and fifth graders generally had leas general knowlege of relevant phenoment (as will be elaborated shortly) and the math ekills of fourth gradera with multiplication and division could be prett:y shaky, so we decided to begin our teaching study working with 6th grade.rs. Finally, we were highly encouraged by children's enthusiestic response to the Archimedes program and their capacity to formulate a rule for sinking and floating in terms of density, and hence decided to make it a rijular part of our teaching unit.

Looking more specifically at children's responses in the pre-interview, we found evidence of age differences in the following beliefs: weight is a property of matter, the volume of an object is not affected by a shape change, the smallest piece of steel and aluminum differ in weight, and matter is particulate and the spacing between particles can explain density differences of materials. In general, there was a steady increase with age in the proportion of children holding each of these beliefs. In our small sample, only 25% of the 4 th graders thought that the styrofoam, cork and grain of rice all weighed something (and none of thes justified their answers by asserting it had to weigh something because it was made of matter), while all of the 6th graders thought these objects had weight and explained their judgment in terms of their belief that all matter had weight. Similarly, only $25 x$ of the 4 th graders clearly understood that changing the shape of plasticene did not affect its volume, while all of the 6th graders did. $25 x$ of the 4 th graders believed that the gmalleat piece of ateel and aluminum would differ in weight, while all of the 6th graders did. Finally, none of the 4th graders used atomistic explanations of the weight differences of objects, while half of the 6th graders did. In regard to this last point, it should be noted that the 6 th graders had received some explicit instruction in the atomic theory of matter already in school, which may account for this age shift. The seaponses of children at the earlier ages were quite various and
inventive, including: the aluminum object is hollow inside while the ateel object is full or has a weight in it, differences in the aurface markings of the two objects accounts for the weight difference, differences in the hardness/aoftness or dullness/shininess of objecta accounta for their weight differences, the steel has magnets inside which pulla it to earth while the aluminum is more free floating, the steel has sinking cella inside which sink to the bottom and presa down on the hand while the aluminum has floating cells which rise to the top and push up, and ao on. One atriking feature of the models produced by most of the fourth and fifth graders was that they did not presuppose that materiala were homogenous and uniformly distributed throughout the object.

In one respect, however, children at all agea were the ame: very few realized that two different aize pieces of steel (or aluminum) have the same density. We probed children's underatanding of density as an intensive quantity in two ways: by asking the to insert two new pieces of steel and aluminum into their ordering of the density of the materiala (they had already ordered same size pieces of wax, steel, and aluminum) and by aaking the to compare the density of a large piece of aluminum with a piece created by cutting it in half. Only $25 x$ of the 4 th and 5th gradera combined responded by consiatently asserting that the density of objects made of the same materials was the same, while none of the 6 th gradera had this basic insight. Thus, coming to understand the intensive nature of density as a quantity was not an aspect of children'a underatanding that was spontaneously improving during these yeara (or improving aa a result of whatever science instruction children had).

Finally, there was another respect in which there were no uniform age trends: in children's developing a clear way of conceptualizing the quantity "amount of matter." No child responded by saying that it waa an ambiguous question, and that there were two distinct ways of conatruing "amount of matter." Half the 4 th and 6 th graders ainply used the sizea of the objects to infer the amount of matter in them while half the 5th graders conaistently used the weights of objects to make this inference and two children (one 5th and one 6th grader) always chooae the ateel object as having more matter. The reat of the children picked the heavier object as having more matter when they were the aame gize and the larger object as having more matter when they were the same weight (or were unsure what to do in the latter case).

During the teaching aesaions, we learned that children could order objects in the computer microworld by the three dimenaions. They could also solve simple problems requiring them to think about the interrelations among the three quantities, although some of the 4 th graders were very shaky in working with multiplication, and thought the problems through by counting or using addition and aubtraction. All the children had a pretty clear underatanding of maps and agreed that no map was better than the others, but just served different uses. All the children were also comfortable with uaing the computer as a modeling tooi for the beads and pennies problems, and able to uae it in a qualitative fashion to repreaent the density differences between ateel and aluminum. However, they did not think about the density differences in a preciae quantitative terms without further prompting--i.e., they aimply wanted to
show that steel had more dots per size unit than aluminum and did not worry that it has three times more. Some of the better and older students were able to understand density more quantitatively and to use the computer model to work their way up to a mathematical formulation of density in terms of weight per unit volume. Here it genuinely seemed that the computer representation helped them. When we asked them to formulate a generel rule relating the diffexent quantities, they at first looked lost, but then were able to understand the question working with the computer representation and transfer their solution to the real world objects.

Half of the students at each grade received the post-interview. All the children's spontaneous models had changed from the pre-interview in ways that showed a better grasp of density, but no child directly made use of the computer model in the form we had presented it. The two fourth graders moved from depicting dense objects as full or having a weight in them and legs dense objects as hollow, to showing objects as uniformly filled with matter of varying ahades of gray. Objects made of the densest material were depicted as darkest; while objects made of the least dense material were depicted as lightest. Further, objects of different sizes but the same density were depicted as having the same intensity of shading. While these drawings made no attempt to deal with the dimensions of size, weight, or density quantitatively (by depicting explicit size and weight units), they had shown a grasp of the fact that pure materials are uniformly distributed and they had, at least implicitly, depicted density as an intensive property of materials. The older children all made more attenpt to consider explicit units, but not always completely successfuliy. For example, one 5th grader when given the problem of modeling how the different size pieces of copper could have the same density explicit’y argued that if you took an equal size piece from each they would weigh the same (note: he actually developed this insight in the course of working through this problem in the post-interview; he was initially somewhat perplexed by it and had not been able to model the three objects of the same size but with different densities). And both the sixth graders, in modeling the three same size pieces of different densities, explicitly noted that denser materials had more stuff (particulately represented) packed into the same size piece. One also went on to successfully model the sitution of same density but different sizes; the other became confused. When we asked children to use the computer notation to depict objects of varying sizes (and weights) but made of the same material, now ali of the older children and some of the younger children as well correctly portrayed the objects as made of the same building blocks (and hence having the same density), but differing in numbers of size units. Thus, most children had assimilated how to use the model correctly.

Turning to the ordering tasks, children were in general less successful. Here only one of the students (a 6th grader) was able to order the objects correctly by the density of materials and one 4 th grader succeeded with some prompting (none had done it correctly in the pre-interview). Of course, the ordering tasks came first in the post-interview, and children might have done better if we had asked then this question after they had worked on the modeling problems. Nonethless, it revealed how shaky students were in understanding density as an intensive quantity. We suspected that in our concern for having students
deal with quantitative aspects of the inter-relation of the three quantities, we had not stressed building a qualitative sense of density as an intensive quantity-- that is, a quantiry which is defined locally and is not affected by the total amount of matter in an object. We concluded that in our subsequent teaching efforts we should put greater stress on qualitative understanding of the model atid expiicitly teach procedures for ordering by relative density (which can be understood in terms of the model). In addition, we decided to change the way we asked students to construct their own models. Rather than ask them to invent an explanation of why same size objects have different weights (with an emphasis on thinking about materials at a microscopic level), we decided to elicit their ideas about some of the factors that affect weight and then ask then to draw a picture which represents those ideas. We made this change primarily because we had decided not to interpret our model in atomistic terns at present. Since most children did not spontaneously believe in atomistic conceptions, and since it would be too complicated to present a range of experimental support for such a wide-ranging theoretical assumption, we thought it might promote greater assimilation of our model to present it on a level more compatible with their conceptual framework. In our fuller teaching unit we planned to introduce students to a range of models to emphasize the dynamic and changing quality of models rather than their being construed ea truth.

The results with the children who were given the Archimedes program were more encouraging. With this subgroup, all but one (a 4 th grader) were able to formulate a general rule in terms of dengity and underatood what the rule would imply for real world objects. Also, the children greatly enjoyed this session and worked easily with the program. Since understanding the program depended upon their understanding our underlying model, this result provided some evidence that this group of children had understood some of the previous lessons. They also were some of the students who had shown greater facility with the model during the teaching segsions.

Overall, we were able to pinpoint fron the pilot study those qualitative aspects of understanding density on which to focus in the teaching study. We decided to work with 6th grade children because although they did not yet have these qualitative understandings, they did have much knowledge relevant to understanding our model. We aiso decided to make the teaching excercises less quantitative in nature since facility with number problems did not always yield qualitative insights, and to include the Archimedes program in the basic unit since it was so motivating. Finally, we decided that it would be more useful to begin with a non-atomistic interpretation of our model. since many students do not yet have atomistic conceptions, and that it was important to stress evaluaiion of models as useful or not useful for some specific purpose rather than to present them as "truth".

CHAPTER 4

THE TEACHING STUDY

Introduction

The purpose of the present study was to determine whether we could bring 6th grade students to understand more clearly the distinction between weight and density and to apply a concept of density to situations of sinking and floating. In keeping with the recent literature on stucients' alternative conceptual frameworks in acience (Driver \& Easley, 1978; Driver G Erickson, 1983; Novaik, 1978, 1982; Thampagne \& Klopfer, 1984), we assuae that children come to acience class with existing conceptual frameworks whis: need to be engaged and modified in the course of science instruction. The challenge is to understand what (if anything) students already know abjut density, how this knowledge is organized, and how to use this information about student starting points to create a successful teaching intervention.

At first glance, previous research supports differing conclusions about the age when children are "ready" for instruction in ciensity. Piaget and Inhelder considered the construction of a concept of density and the formulation of the law of $\leq l o a t i n g$ bodies to require the development of formal oferational theught in adolescence. In their pioneering woris, The Child's Construction of Quantities (1974), they trace the development of the child's concepta of size ${ }^{1}$, weight, and density and relate the concepts both to the development of children's atomistic theories of matter and to the development of logical thought. They argue that initially, in the prescisnol years, the pre-operational child has an undifferentiated concept of wedght, size, and amount of stuff. At this point, the ciild cannot quantify this intuitive concept and hence is unable to realize that the size, weight, and amount of stuff in an object remains the same when aimpiy the shape of the object is altered. Wj 1 the development of the quantifying operations of concrete operations in the early elementary school years, the child first differentiates a notion of amount of atuff from weight and size. He now assimes, for example, that the amount of clay In a ball remaing the same when the ball is rolled into a sausage shape, although he still believes that these transformation change the aize and weight. Subsequently, he comes to quantify (ard conserve) weight as well as amount of stuff. At this point, he makes a clear differentiation bei. sen weight and size. However, the child does not yet clearly distinguish between weight and density, and does not assume the underlying stuff to be atomistic in Eorm. Finally, with the onset of formal operations, the child constructs a formal concept of volume (which he can now conserve), relates weight to volume in constructing a concept of density (using proportional

1 We use size here and throughout to indicate the volume oi an object (children might be aware of the size of an object before knowing the definition of its volume) and density for its specific rejght (i.e.e the weight of a unit volume).
reasoning schemes), and formulates an atomistic conception of matter in which density is understood in terns of schemas of compression ar.d decompression.

In related work about the development of the child's understanding of sinking and floating, Inhelder and Piaget (1958) also show that it is only at adolescence when children can formulate the law of floating bodies by stating that objects float if their density $i=$ less than that of water, and sink if their density is greater than water. They argue that the f:ormulation of this law requires formal operational thinking because it involves density (a formal operational concept) and because it involves imagining a hypothetical entity (the amount of water equal in volume to the volume of the object). Earlier, children invoke multiple explanations for why things sint and float (because of its weight, size, shape, etc.) and are unable to come up with a single formulation. Gradually, they come to have some intuitive notion that different materials have different specific weights, but are unable to use this notion to come up with a coherent and unified explanation.

More recent work within the Piagetian tradition has put greater emphasis on concrete operational "precursors" of the density soncept than Piaget and Inhelder did. For example, Emerick (1982) writes: "Data from the present research indicate that density is a concept that is constructed by a child over a period of years, probably beginning as early as when he or she is able to squeeze objects and to recognize that objects are made of different substances." (p. 177) These data included the fact that some subjects had the intuition that what an object is made of affected whether it would sink or float, and that if an object sinks or floats, then an object made of the same material will react that same way regarl_ sa of the size or weight of the object. Further, the child has some intuitive notion of specific weight. In fact, Emerick's data are not that different from Piaget's original data; Piaget too noted that in the late concrete operational stage children had these intuitions. But he explicitly claimed that the child still did not differentiate weight and density; thus, piaget felt thet formal operations were essential in making this differentiation. Bovat et al (1982) made modifications to the traditional volume and density conservation tasks and argued that concrete operational childiren can in fact conserve volume and can conserve on intuitive density concept ar arcund the same age that they conserve weight (i.e., ages $8-10$). These results are more novel, and were not clearly anticipated in Piaget's earlier work. Nonetheless, what Bovet et al call an intuitive density concept is the child's realizing that different substances have different specific weights and that the differences are proserved with successive halvings. They provide no evidence that the child differentiates this notion from absolute weight. Thus, it is still unclear from this more recent work whether the child's intuitive density concept is part of his weight concept or distinct from it.

Smith, Carey, and Wiser (1985) were specifically concerned with testing Piaget's claims that concepts of size and weight and weight and density undergo differentiation during middle childhood and early adolescence. Like piaget, they felt that conceptual differentiation was an important kind of change that occurred in cognitive development and needed
to be studied in the overall context of theory cinange. Unlike Piaget, however, they did not attempt to study differentiation within the framework of his logical stage theory, and they used a different range of tasks to atudy children's ability to use these concepts. They also placed greater emphasis on earlier developments within children's matter theories than atomism--children's formulation of a clear notion of material kind.

In their work, they found that even preschoolers clearly distinguished between size and weight as dimensions; further, although there was evidence that children had an undifferentiated weight/density concept in the late preschool and early elementary school years, they found that by ages 8-10, children do develop a precursor of a more formal density concept which is distinct from their weight concept. At this age, most of the children in their sample had two distinct senses of weight available to them-heavy and heavy for size--and use heavy for size in generalizations about materials and heavy when considering the weight of the total object. They realized that a large aluminum object can equal a smaller steel object in weight, while at the same time noting that the aluminum is a lighter material than the steel. They realized that an object made of a heavier kind of material caa be lighter than an object made of a lighter kind of material. And they correctly sorted objects into steel and aluminum families by making weight judgments relativized to size (the objects were covered with contact paper so that visual cues could not be used). Further, their understanding of material kinds had advanced to the point that they now thought of objects as conatituted of naterials at every point (and not just as constructed from materials) and they were beginning to distinguish between some of the properties of materials which only emerge whan they are in buik quantities (e.g., some of the surface markings and characteristics) and properties of materials which hold at a micro level (e.g., having weight and size). From their data, Smith et al argue that children are beginning to develop a sophisticated iatter theory during the middle elementary years--albeit not yet an atonistic theory-which calls for children to distinguish between two senses of weight. Thus, the differentiation between weight and density begins well before adolescence and does not require an understanding of atomisn.

Of course it should be noted that the density concept possessed by elementary school children is still quite limited and different from that of scientiscs. Nonetheless, it is significant that such a precursor concept seems to develop naturally, without formal instruction, since the topic of density is not broached in the curriculum until grades 5 and 6 at the earliest (and frequently not even until grades 7,8 , or 9). Piaget and Inhelder were concerned with the child's ability to formulate a density concept, mathematically, more like the scientists. The fact that children typically achieve such an understanding in adolescence, at a point where they have been taught such a concept in schools, raises a number of inportant questions. To what extent is instruction necessary for chisldren to progress beyond their intuitive density concept? What are some of the steps they take in assimilating the scientist's conception of density? How can instruction best enhance such further development? How far can elementary children progress in constructing a formal concept of density and in formulating a law to explaining siniking and floating?

We would argue that without some explicit instruction it would be difficult for most children and adults to go beyond their intuitive density concept and to understand sinking and floating in terms of relative density. A number of researchers have found that adolescents with little prior science instructio: and adults whose science instruction came a while ago did not initially formulate the law of ainking and floating in terms of a concept of density (Rowell \& Dawson, 1977a and 1977b, 1983; Duckworth, 1985): Cole \& Raven, 1969), For example, Rowell \& Dawson (1977e and b) report that only one ninth grade student explained sinking and floating in terms of density prior to instruction. And Eleanor Duckworth (1985) reported that it took over 8 weeks of extensive experience experimenting with sinking and floating for a group of adults to formulate an understanding of sinking fand floating using a concept of density. Further, Rowell and Dawson found that even with explicit instruction 9th grade students had difficulty learning to accept that the densities of pure materials defines a constant for those materials (1977a) and many stucents failed to understand sinking and floating in terms of density (1983).

These results are particularly interesting for two reasons. First, they suggest one way in which student's intuitive density concept may be deficient: density may not yet be clearly conceptualized as an intensive property of materials--one which does not vary as a function of the amount of material in the object. In our pilot work with 6th grade students, we also found evidence that students did not yet have this understanding about density. Second, the results suggest that students may have important. conceptual resistances to learning the contemporary scientific concept. of density and applying this understanding to the phenomena of sinking and floating.

A consideration of some of the difficulties scientists had historically in understanding sinking and floating highlights the complexity of the problem of asking students "why certain things sink and other things float". It also points to the importance of distinguishing among several elements and stages that compose such an understanding. One element is the understanding of the concept of density per se as an intensive specific property of matter. This can be done, as was done in ancient times, by merely recognizing the existence of such a properiy of matter, without relying on an atomistic theory as an explanation for the density differences of different materials. Stucents, unlike the ancients, seen to have difficulty even at this level. A completely separate issue is whether one can use this recognized property as an indicator for predicting if a certain object will float or sink. Here it is important to distinguish formulating a predictive rule which uses density as an indicator and thus enables them to know when an object will float in a given liquid from explaining why and constructing a theory to explain the phenomena. Such a theory will have to rely on concepts and laws of hydrostatics or on energy considerations. It is interesting to note that Archimedes in his work tried to formulate an understanding of sinking and floating without using a concept of density explicitly (instead he thought in terms of balances and the relation between the weight of the whole object. and the weight of the amount of water displaced by that object). Further, his famous rule only covers limited aspects of the phenomena of sinking and floating (see The Works of Archimedes, translated by T. L.

Heath, Cambridge University Press, England, 1897). Galileo attended to this problem in his work ("On bodies that stay atop water or move in it," 1612, in Cause, Experiment and Science translated by Stillman Drake, University of Chicago Press), enlarging the law to a nore general case, but again was not able to give a complete explanation (see Snir, in preparation, for further details about the historical development of the concept of density and the law of sinking and floating). This historical perspective reveals that these scientists did not look for predictive rules relating ainking and floating to density in their work (or even mention such rules). Further, it reveals how hard it was for some of the best: scientists of the day to give a complete explanation of these phenomena, and how such explanations require use of many other physical laws and concepts. Certainly, then, we cannot expect students to construct such complete explanations on their own.

How, then, should instruction about density proceed? Previous work has found that highly formal approaches are not well understood by many average 9th grade students (Rowell \& Dawson, 1977a). For example, Rowell and Dawson had students weigh and measure the volume of many different pieces made of the same material and graph the results. From this experience, many children had difficulty formulating the generalization from this experience that the densities of specific materials were constant (under atandard conditions). Further, Cole \& Raven (1969) found that, among their older group of students (8 th graders and adults), direct instruction in the correct principle for understanding sinking and floating was not nearly as effective as instruction which engaged and challenged students' prior beliefs about sinking and floating (i.e., involved students in excluding irrelevant principles which they previously had thought were relevant). Significantly, there was no evidence that the younger children in their sampla (7 th graders) benefited from any form of inatruction about sinking and floating, but this may have been because they made no attempt to teach children as explicit concept of density, in a way that built on their natural concept of density, prior to having them explore the phenomena of ainking and floating. The knowledge level of the 7 th graders about related phenomena was considerably less than the knowledge level of the older students.

We believe that younger children are ready to understand density as an intenaive quantity distinct from weight and apply this understanding to sinking and floating, if they are taught about density in a way that builds on their natural concept and their understandings of material kinds. Their natural concept of density is articulated in terms of heavy for size--an ixprecise notion (not yet weight per unit volume)--which does not lend itself to ready quantification. Because students have no clear notion of a unit aize, heavy for size cannot define a quantity which is distinct from weight--it remains a more qualitative notion. Thus, children do not have two distinct quantities-and in tasks which call for them to think about density in a more quantitative fashion, they may revert to using weight. Second, although children have an intuitive way of conceptualizing the density of materials, they do not have an atomistic conception of matter and may not yet be able to generate models of materials which aliow them to separately portray size, weight, and density as quantities. For example, many children conceptualize denser materiala as "thicker" rather than as
"more crowded with particles" or as having "heavier particles, uniformiy packed". Their visual model in terms of thickness may serve to confound the distinction between size, weight, and density, rather than sharpen it, since thicker materials are often thought to be wider than less thick materials. Providing children with an alternative visual modei of density (which portrays density, size, and weight as distinct quantities iut which is not yet presented in teras of atomistic conceptions) may help them to see density as a distinct quantity from size and weight.

In our work we try to develop Sth grade children's understanding of density as an intensive quantity through teaching activities which involve them in constructing their own models and working with a presented model. Visual models are concrete and can depict the interrelations arong size, weight, and density directly rather than solely in an algebraic or numerical way. They also allow us to present ideas about standard units which are conceptual in nature and do not presuppose a fuli understanding of volume. Thus, models can be used to build a qualitative as well as quantitative understanding of some of the important properties of density. In addition, modeling is an important activity for scientists, but one which has been little used in science teaching. Modeling is of central concern to any attempt to use computer simulation in science education. since such simulations are, after all, models. Students may misinterpret the complex relation between the computer model and the real world unless they have some awareness of the process of modeling. Therefore, quite apart from the need to teach about density, the curriculum needs to deveiop in children an explicit understanding of the nature of models and how they function as a tool in science. Working with models of density is a good place to start such instruction, precisely because it is such a limited and simple physical situation.

In our present teaching, we begin with a simple computer model representing only three quantities: the size of objects, the weight of objects, and the density of the materials the objects are made of. Children build objects on the computer screen where variation in the size of the objects is represented by the number of standard sized building blocks that are used in its construction, variation in the weight of the objects is represented by the total number of dots in all the building blocks of which the object is composed, and variation in the density of the naterial is represented by the number of dots per building block (there are five types of building blocks, ranging from 1 dot per block to 5 dots per block). The computer program is also restricted to constructing only objects of uniform density and rectilinear shape to avoid the problems of introducing objects of mixed density at this tine (e.g., objects with holes in the middle, objects made of different materials). The model represents objects as continuous (all the building blocks are flush with one another) and no attempt is made to interpret the model in atomistic terms (dots simply portray the amount of weight packed into a certain size unit; they are not described as nucleons). At this point, the idea is simply to show students (visually) that some materials have $2,3,4$, or 5 times the weight per unit yolume as other materials, since a deeper explanation is not needed for an accurate description of the concept of denaity. The program also directly displays data about the size, weight, and density of objects that have been constructed and permits students to conduct simulations of
simple experiments in which they can visually perceive the quantities of density, weight, and size, as well.

In sumary, the twin purposes of the present study are: (1) to see if we can help 6th grade students build a good qualitative understanding of density as an intensive quantity using a modeling approach and teach them to apply this concept to the phenomena of sinking and floating; and (2) to investigate how 6th graders spontaneously model density and how ready they are for metaconceptual instruction about the nature of modeling.

Methods

Subjects

This teaching atudy was done with a sixth grade class at the West-Marshall School in Watertown, MA. There were 19 students in the class: 7 girls and 12 boys ranging in age from 11 to 13 years. One girl was absent from school during the week the pre-interviews were cone. Therefore, although she participated in the teaching experiences and the post-interview, her data could not be included in the main analyses.

Watertorn is a suburb of Boston and the students of the West-Marshall school are mostly from families of low to middle income. The school is both an elementary and junior high school and its population is ethnicaliy diverse (e.g. Greek, Armenian, Irish-American, Italian-American, Scottish-Canadian, Erench-Canadian).

Procedures

Overview

We worked directly with students in three stages: first conducting individual interviews; then presenting instructional material to the entire group in a series of eight lessons; and finally conducting individual interviews once again. We present here a brief overview of this wori; in sections that follow, we will describe each stage in greater detail.

Each atudent was interviewed privately before the teaching sessions began. The interviews lasted 45 minutes to one hour. There were usually 2 adults present - one interviewer and one recorder. Occasionally an observer was present and on two occasions the interviewer also acted as recorder. (These interviews will hereafter be refered to as "pre-interviews")

Questions were designed to gather information about the students' ability to: distinguish among the dimensions of size, weight, and density; order objects according to these dimensions; describe and explain similarities and differences among objects relative to these dimensions and to represent these aspects graphically; and give explanations for the sinking or floating behavior of various solid objects in liquid.

The teaching segsions involved the class as a group. There were eight instructional periods and each lasted from 1 to 1 and $1 / 2$ hours. They were held twice a week on the average, end were presented by the research tean.

The students' regular teacher was usuaily present during class, observing, overseeing the smooth running of class, and assisting with the handling of student questions.

Central to the teaching sessions was the use of our computer programs which offer a visually accessible and mathematically accurate model of size, weight and density, and a microworld in which to investigate sinking and floating phenomena. Students also handled real materials, witnessed demonstrations, participated in discussions, and filled out worksheets which at times called for them to copy their computer generated images onto paper.

Classes took place in the school's computer lab. Students either sat in a semi-circle with their backs to the computers - facing the teacier, blackboard and demonstration desk - or worked at the computers in pairs, each pair having its own Apple IIe. Occasionally, some pairs preferred and were able to break up and work alone. When activity worksheets were given, pairs worked through the exercises together, with each student filling out his or her sheet separately.

There was one exception to this general format. One lesson was given to only two students at a time, using a computer set up in the library. The purpose of this was to give more individualized attention to students about mid-way through the intervention.

Students were again interviewed individually after the intervention ("post-interviews"). The questions were the same as those on the pre-interview with just a few exceptions. The time between pre- and post-interviews was approximately 5 weeks.

The Pre-interview

The pre-interview was divided into 3 parts: ordering objects along the dimensions of weight, size, and density; exploring ideas about whar makes various objects weigh what they do and representing these ideas graphically; and articulating some rules, predictions, and expianations concerning the sinking or floating behavior of objects.

The Ordering Tasks. In this part of the interview, students were firat given a very amall rubber cube and asked if it had any weight at all. This was intended to elicit whether or not students believed that matter must have some weight or mass, even if the object's felt and/or scaled weight was insignificant. If a student did not think the object had any weight at all, he or she was given 10 such cubes and asked whether these had any weight.

We then proceeded to ask for three separate orderings of various objects: by weight; by size; and by "the heaviness of the kind of materiai objects were made of, that is by the density of the material." Objects were selected so that the three correct orderings would be quite different.

Based on the pilot data, we did not assume that students knew the meaning of the word "volume", so we described volume in terms of "total size", "size all around", and "the amcunt of space it takes up."

Studenis were asked if they had heard of density as a separate question. Since most students had not heard of density, we offered the following clarification: "Some objects are made of a heavier kind of material then others. I would like you to place these objects according to the heaviness of the kind of material they are made of, that is according - to the density of the material."

Prior to the density ordering task, students were asked to group objects according to the materials of which they were made. This was one place in the interview where correct answers were supplied if students made mistakes. We also went over the actual names of each kind of materiai. Since density is constant for a given material, we felt that clarifying material kind groups would help us avoid some confusion when diagnosing responses. (For example, if students did not put objects made of the same material together as having the same density, it could not be because they were not aware that they were made of the same material).

The stimuli for the ordering tasks were grouped into two sets. The first set consisted of small equal size (1 cc.) cubes made of rubber, steel, aluminum, and copper. Objects were constructed out of these cubes by placing them side by side or on top of one another. The objects were: a single aluminum cube; a group of 5 aluminum cubes laid flat in a line; 5 aluminum cubes arranged as a modified rectangle standing vertically; 3 steel cubes laid flat in a line; and 7 rubber cubes laid flat in the shape of a modified rectangle. Students were told to consider the arranged cubes as distinct objects, but that they could take them apart if that would help them complete the task. We also provided a balance scale, a postage scale with a 5 lb . capacity and a tape measure for their use.

The second set of stimuli consisted of 3 cylinders, $1 / 2$ inches in diameter. Two were of aluminum (3 and 6 inches tall) and one was of sieel (2 inches tall).

Students were asked to produce orderings of the first set (cubes) and then to add the second set (cylinders) to the order. In this way, the number of objects students would have to order at one time was reduced. Furthermore, the cube-type objects afforded ordering strategies that could not be used for the solid cylinders. (For example, equal size cube samples could be taken from each object and weighed in order to determine their material kinds' relative densities.

Questions About Weight and Modeling Tasks. Students were given a sei of 5 cylinders - 1 made of wax, 2 made of aluminum, and 2 made of steel. Included in this set were: objects of equal size but different weights and materials (1 aluminum, 1 steel, 1 wax); objects of the same maieriai, but different sizes and weights (2 steel, 2 aluminum); objects of equal weight, but different materials and sizes (1 aluminum, 1 steel).

Students' ideas about factors which might affect an c.ject's weight were first elicited verbally. They were then asked to represent these ideas on paper, using their own "picture coce". We specifically tried to concentrate attention on material and size as relevant factors by asking such questions as: "These two steel objects weigh different amounts. How could that be?"; "These objects are the same slze, but weigh different amounts. How could that be?"; "These two are different sizes, yet they weigh the same amount. How could that be?"

After they handled the objects and answered the questions, the atudents were given a piece of paper and 8 colored pencils and asired to produce a drawing. They were told that their drawings did not have to look exactly like the objects, but rather they should just try to represent tine information as they saw fit, using their own cocie, focussing on the ideas we had just talked about. Students were reminded that we had taiked aoout similarities and differences with regard to the objects' size, weigint, and material.

When finished, we asked then what information they had represenced, how they had represented that information, and if they thought their code was useful.

Questions About Sinking and Fioatinq. The third part of the interview entailed making predictions about whether objects would sink or fioat and explaining how the same object (a piece of lucite) could sink in one iiquid (water) and float in another (salt water).

Student:- were first given a set of eight oijects made of four different materials. There were two sinking materials (plasticine and lignam vitae wood) and two floating materials (hardened glue and pine wood). One large and one small object composed of each material were given. Included in this range of objects were two pieces of wood with equal size dimensions (one sinking and one floating), relatively heavy floating objects, and relatively light sinking objects.

Students were given a tub of water and asked to investigate how they would behave in water. They were asked to comment on what kinds of tings sink and what kinds float, and then to come up with a general "ruie" winch could be used to predict whether something would sink or float.

We then asked students to predict whether a particular object would sink or float based on their experience with a different size object made of the sane material.

Finally, students were presented with a small piece of lucite and iwo plastic cups filled with equal amounts of liquid. One cup had red liquic (colored water) and the other, biue liquid (colored salt water). They were to place the lucite first in one liquid, then in the other, and offer an explanation as to why it floated in one liquid and sank in tie ocher.

The Teaching Intervention

The Software. During the courge of the teaching, tinree computer programs that we designed were used: Modeling with Dots/Weight and Density, Archimedes, and Sink the Raft (see chapter 2 for a description of these programs).

Real World Materials. A number of real objects and materiais were used during the teaching sessions.

A range of steel and aluminum pieces were used that included: equal size cylinders of each weighing 1 lb . and $1 / 3 \mathrm{lbs} . ;$ several 1 cc . cubes of each: a very large aluminum cylinder, weighing approx. 5 lbs.; smalier cylinders (approx. 1/4" diam. by $2^{\prime \prime}$ tall) which were equai in size with nore cylinders made of wood, hard rubber (vulcanite), and brass. 3rass cubes, cork, other wood pieces, and clay were also used.

Students had rulers and pencila. We provided two scales (balance and postage) and various containers for holding and measuring liquids. We used three liquids: oil, water and mercury. Students zever hsndled the mercury, but were allowed to lift a securely contained and wrapped amount of it cone pound) during one of the tesching sessions.

Orqanization of Class Sessions. The following is an account of the class sessions held after the intial interviews:
(1) First Class (Introduction to the Computer Program): During the first class students became acquainted with the " Modeling with Dors" program, following the worksheet entitled "How to Use This Program" (see Appendix). When they finished this first sheet, they were given another which had a screen-dump picture of 3 objects. They were asked to construct these objects on their screens and then to order them by "size," "totai number of dots," and "dots per size unit." They were then to build 3 more objects, this time getting the specifications from a screen-dump of the data.
(2) Second class (Using the Progrsm to Order and to Model): In the second class, we reviewed the commands and the meaning of the data. We discussed the two ways the word "dots" could be used - clarifying the difference between "total number of dots" and "dots per unit size." We then had a discussion about what it means to order. We found several ways to order the nembers of the class as examples. (e.g., height, weight, age). Students were then asked to complete a worksheet thet had ordering tasks based on computer drawn objects. Answers were discussed and put on the board. The next activity was to model groups of pennies and groups of beads with the computer. Simple intensive quantity word problems were given and studenta constructed solutions on the screen. We then gave students steel and aluminum cylinders of equal size, and told them how much they weighed (1 lb . and $1 / 3 \mathrm{lb}$.). We let them examine the cylinders and chen had them represent the cylinders on the computer screen.
(3) Third class (Discussion of Modelinq): After looking over the students' drawings of copied screen images, we made posters which typified
their ways of representing the groups of beads and pennies. The posters were taped to the blackboard and we discussed how information was represented. We articulated the "code" used and what we did and dian't include in the representation. Students realized it was important to be accurate and consigtent in the mode of representing. We then broke the class up into 4 groups and handed each group a different map of the Boston area. One was a subway map, one a road map of Boston and surrounding suburbs, one a streetmap of the city, and one a souvenir map wich drawings of Boston's buildings and boats in the harbor. Each group was to report on what was represented and the way it was represented. We concluded that one map was not better than another, but that eacin was consistent and served a different purpose.
(4) Fourth Class (Modeling Real Materials): We discussed the ianguage of the computer and how to represent real objects, including the issue of size vs. shape. We then presented, discussed, and tried out a step by step way of modeling the size, density, and weight of real objects. We started with individual cubes of different materials, progressed to groups of cubes, and finally to solid cylinders.
(5) Fifth Class (Review): We reviewed the code used to represent material objects. Posters were made to compare the computer representations of size, weight and density (heaviness of material) to those used by students in the pre-interview. We concluded with some discussion of the relationships of the three quantities and some problems were given on the blackboard for studente to try.
(6) Sixth Class (Small Group Segsions): We worked with two students at a time. Students were to select from a range of real materials, the ones which corresponded to pictures on the screen. We discussed some ways of extending the model, i.e. increasing the number of dots/size unit necessary to represent a certain material. paper and pencil were used here as weil. Attention was paid to representing quantitative relationships of the densities of several materisls accurately. Several sampies of differently tinted water were used to demonstrate the idea of intensity of color, and to relate this notion to the density of materials. Other analogies or examples of intensive quantities were generated (e.g., price, sweetness).
(7) Seventh Class (Sink and Float, part 1): There was a demonstration and discussion about ordering objects according to the density of their materials and whether we could arder liquids according to their density. Emphasis was placed on developing a procedure for finding relative densities: take equal size portions of materials and weigh them. The heavier portion will be made of denser material. Later in working with mercury and steel we considered an alternative procedure: take portions of two materials which are equal in weight and compare their sizes. The smaller object is made of the denser material. Using these procedures, we established a density ordering for the following materials: brass, steel, aluminum, wood, oil, water, mercury. Many students thought that oil is denser than water because it is thicker. Weighing equai size portions of these liquids proved water to be denser than oil. The high density of mercury showed that solids are not always denser than liquida. The Archimedes program was then introduced. A brief demonstration was given in
front of the class and then students were allowed to experiment and piay with the program for about 10 minutes. The object of this sesssion was for students to come up with a rule that states when an object wiil sinik and when it will float.
(8) Eighth Class (Sink and Float, part 2): We had a short inscussion on the meaning of making a general rule based on observations and experiments. We presented some of the rule ideas generated by the class during the previous session (They had written these down.) We included a demonstration that color and welght were not generally good criteria for deciding whether an object will sink or float. Students were given another worksheet and instructed to restrict their investigations uaing the Archimedes program to finding cases of ainking objecta; we asked them to come up with a rule about ainking objects. We went over the worisineets ana discovered that denaity or dota/aize unit of the liquid compared to the object was the relevant factor. The Sink the Raft progran was then installed on the computers and students were given another worksheet. The main purpose of this part of the lesson was to find out if the size (and thereby the weight) of an object influences whether or not it will ains or float. We concluded the class by noting that neither size or weight are crucial factors; rather it is the density of the object compared to the liquid that is crucial. A couple of final puzzles were posed: 1) Why do balloons filled with helium float? 2) Here is a large piece of clay. it sinka. Here are two saall equal size pieces of clay. One sinks and one floats. Is one a fake? Why?

The Post-interview
The post-interview d!ffered from the pre-interview only in the following ways:
(1) In the post-interview, it was assumed that all students were familiar with the word "denaity." Hence, students were not asked "have you heard of density?" Further, when we wanted thea to order by density, we simply aaid, "Order these by the density of their materials" instead of by the "heaviness of their materials, that is the density of therr mater sls." Finally, after they had finished the ordering tasks, we asked, "Do you think there is a difference between weight and density? What is the difference?"
(2) During the modeling task, in addition to their spontaneous models, students were asked to produce another drawing of the five objects using the computer notation.
(3) Studenta were shown a drawing which depicted a modified version of the computer model. That is, in this picture, dots stood for empty spaces so that steel was represented with 1 dot per block while wax had 5 dots per block. Studenta were asked to react to this model. ("...Useful? Like it? Good? Can you imagine the small spaces?")
(4) Finally, following the interview, students were queried informaiiy about their reactions to the teaching sessions and the computer programs.

They were asked to comment frankly on what the liked best and ieast. We also invited their suggestions.

Results

Results are presented below for each of the two goais of our teacining intervention: (1) to help students create a concept of density which is distinct from weight and volume and (2) to help build students' metaconceptual awareness of modeling as a tool of science. At present most of our teaching efforts were targeted at the forser goal and most of our questions in the pre- and post-interview assessed the degree of our success in achieving this goal. Hence, we will report most sxtenaively on changes in students' conceptualization of density. However, the interview also dears on children's spontaneous modeling abilities, which would be ixportant to understand in designing a curriculum to build greater metaconceptual awareness of modeling.

Students' understandina of density

There were three main contexts in which we assessed children's understanding of density in the individual interviews: (1) in questioning them about why same size objects made of different materiais did not weigh the same and about why objects could weigh the same even though they were different sizes and made of different materials; (2) in requiring them to order a set of objects by weight, size, and density; and (3) in proioing their understanding of the phenomena of sinking and floating. Within each context, children were questioned in a variety of ways: they answered direct questions, they were asked to do something (weigh objects of different sizea and made of different materials, sort and order oijjects, put objecta in water to see how they behave), explain what they did, make predictions, formulate general rules or definitions, and make a model which expressed their ideas. For each tesk within a problem context, we analyzed children's pattern of reaponding and categorized children's patterns in two kinds of ways: first according the the specific rule or strategy the child used for the task (e.g., a rule based on weight, on heaviness of kind of material, etc.) and then according to whether such a rule showed no understanding of density, partial understanding of density or a clear understanding of density. In making these categorizations, all the data were independently scored by both a psychologist and a physicist. in general, we agreed on both types of categorization; any disagreements were discussed until we reached concensus. We also looked at children's patterns of understanding within an entire centext, and across contexts, to get a sense of the larger patterns of change within children's thinking.

Questions about the factors that affect the weight of objects

Children's understanding of the weight of objects. There were three questions that probed children's understanding of some of the factors tiat affect the weight of objects (1) the question about why two pieces of steel (one big and one small) did not weigh the same; (2) tie question about why three same size objects cone made of wax, one macie of aiuminua, and one made of steel) did not weigh the same: and (3) the question about
why objects made of different materiais and of different sizes (a large aiuminum cylinder and a much amaller ateel cylinder) weighed the same.

In the pre-interview, all the children showed that they underscood that the aize of an object affected its wf ght. They said that one steei piece weighed more than the other because it was bigger, tailer, etc. Indeed, most also commented that because it was bigger it had more material in it.

In the pre-interview, all the children also showed that they thought the kind of material of which an object was made affected its weight. None was surprised that sane size objects could have different weights--they felt that they weighed different amounts because they were made of different materials and different materials had different weights. However, cinildren were not very clear about tire aspect of the materiais that was different. A few children coule be no nore specific than to say the materials were sonehow different. Because of the vagueness of their remarks, these children were categorized as showing no ability to articulate a concept of density (see Table 1). The majority of the children were able to say that some materials are heavier finds than others. They went on to explain this fact in e variety of ways: sora materials may be solid while others are empty or iiquid, some materials may be atronger, and some materisls may have more matarial in them becauge taey are thicker. Further, these children did not expect heayier kinds of materials to always be heavier. They were not pzzled or surprised, for example, to learn that the large aluminum weighed the same as the smailer piece of ateel, and could explain that although the piece of aluminum was larger, the smaller piece was made of a heavier material so they could adc up to be the same. Taken together, these data auggest tha+ this group of children had at least begun to develop two different senses of weight, and to distinguish between heavy objects and heavy materials. Thus, they were credited with a partial ability to articulate a concept of density. Finally, two children explicitly said materials differ in their density, and were credited with a clear articulation of the notion of density. Dae of these children suggested this meant their atoms are more cioseiy packed.

The major change in the post-interview was that more children could clearly articulate the density of materials as a factor affecting the weight of objects (see Table 1). Now the najority of the children either explicitly said it was the density of the materiais that was relevant (with most children accompanying their use of the word density with talk of the material being more packed or having more dots per size unit) or expiaıned the relevant variable as how packf the different materials were. These childien were credited with a clec. articulation of density. Tine rest of the children talked simply about some materiala being heavier kinds or being different. None of the children who persisted in talking about materials as being heavier and lighter kinds coatinued to explain these differences as resulting from the material being hollow/full, solid/liquid, or stronger/weaker, alth.jugh some did persist in explaining the werght differences of materials in teras of the thicinness of the materiai. Significantly, the latter explanation can be (on some interpretations) compatible with explanations in terms of packedness, while the forner types of explanations are not.

Tabie 1

Changes in chiddren's ability to articulate that rie densicy o:materials is one factor which affects an obječ's werght

Pre-intervieut	Post-interview		
	None (1)	Partiai (6)	Ciear (ii)
None (3)	1	i	:
Partial (13)		5	8
Ciear (2)			2

Children's representations of objects: Spontaneous models. After children were asked to explain why different objects weighed what they did (five objects: large and small steel; three objects the same size as the large steel made of steel, aluminum, and wax; and a larger aluminum object which weighed the same as the smaller steel), they were asked to represent what they had been talking about using a picture code. It was emphasized that it was not important that the picture be realistic, just that it communicated in some fashion the ideas they had been talking about. Children were given some paper and colored pencils to work with. After they had completed their drawing they were asked to explain what they had represented in their drawing and to describe how they represented it. Of particular interest to ua here is what attributes of the objects children choose to represent (in a later section we will explore the types of cocies used and the consistency with which these codes were used). This task thus aliows us to judge whether children have a way of visually representing the density differences of materials.

In the pre-interview, most of the children attempted to represent the differences in size and weight of the objects (see Table 2). However, fewer children said they represented the meterials the objects were made of, and only 2 of the children explicitly said they depicted the heaviness or density of materials in their drawings. Instead, five children said they represented the color of the objects as a relevant variable (this response was not counted as a representation of material).

Most typically, outlines of whole objects were shown of varying heights to indicate size differences (the objects were all cylinders with a common diameter). Children indicated by numbers what the weight of the whole object was (they had weighed the objects on a postage scale). And children indicated by using different colored outlines for the whoie object what color or material they were. For these children, then, the welght of the material is not explicitly depicted as a local or separate property from the weight of the whole object. Thus, although most children taiked about heavier jinds of materials in the questions preceding the modeling task, most did not know how to represent this notion in a model.

Of the two chiidren who did attempt to depict the heaviness or density of the materials in the pre-interview, one sard he was depicting the heaviness of the material (and did not separately represent weight) while the other said he was representing the density of the material (and did have a separ ${ }^{-1}$ e representation of weight). Both aciopted a similar representation for the density of materials: they filled the objects with varying shades of coior (ranging from lighter to darker;); the carker coior stood for the heavier or denser material. The child who talked of density used shades of gray which stood for how packed the atoms were. The child who talked of the heaviness of materials used layers of color: the steei was purple and the wax was yellow, while the intermediate aluminum was purple streaked with yellow.

Finally, it should be noted that children varied in the total number of relevant dimensions they attempted to represent. The maximum number of relevant dimensions to represent was four (size, werght, materiai, and

Tabie 2

Children's Modeis:
Changes in what dimensions chiliaren attempt to represent from the pre-interview to post-interview

Dimension	Pre-interview Spontaneous Model	Post-incerview Spontaneous Model	Post-incerview Compucer Modei
Size	15	18	16
Weigit	12	13	12
Material	8	14	$1 i$

density). In the pre-interview, children typically represented one, two or three (see Tabie 3).

By the post-interview, nore children were expiicitiy representing the material kinds and the densities of the materiais than in the pre-interview, although the numbers representing size and weight remained the same (see Table 2). In representing the heaviness or density of materials in the post-interview, 3 used shades of color to stand for increasing density (as used in the pre-interview), 3 used dots/size units, 1 used words, and 1 incorrectly used inverse order of size. Overail, 6 children moved from making no attempt to represent the density of the material to making such an attempt, with five of these six now attempting to represent both weight and density in their models. Table 3 shows that ciildren in the post-interview also attempted to represent more reievani dimensions in their model. Now children ranged from representing two to four dimensions, with nine children increasing the number of dimensions represented from the pre-interview, and six children attempting to represent all four dimensions.

Thus, prior to teaching, most children did not spontaneously atterpt to represent either the heaviness or density of materials in their modeis; indeed, many did not even spontaneously represent the different kinds of materials. Teaching resulted in more children being able to do so. At the same time, it should be noted that many still did not represent density and only four used variants of the computer model in their spontaneous models.

Children's representions of objects: Computer models. In the post-interview we also asked children to draw a model of the five objects using the computer model. They were asked to draw a representation of the five objects on paper, using the notation of the computer model, not literally to model the objects using the computer. These instructions brought about an even greater attempt to represent the density of naterials. As Table 2 reveals, now nost children attempted to represent the density of the materials. (All but one used the standard convention of dots per size unit; the other used an invented code of number of squares per row.) Further, these children (with two exceptions) consistentiy expressed the important features about the densities of the five objects: correctly portraying the two steel objects as having the same density despite their difference in size and weight, correctly portraying the two different size aluminum objects as having the same density, and correctiy ahowing the wax to be less dense than the aluminum and the aluminum to be less dense than the steel. than the steel. The two children who were exceptions were able to achieve local consistency in expressing density relations: among the same size objects, they correctly portrayed steel as denser than aluminum and aluminum as denser than wax, and among the equai weigint objects, they correctly portrayed the small steel object as being nade of a denser material than the larger aluminum object. However, they did not show the two aluminum objects to be made of materiai of the same density, or show the two steel objects to be made of material of the same density. Only one child worried about the exact quantitative reiations among the objects in depicting their densities. He said that steel was three times denser than aiuminum, and aluminum was three times denser than wax, and noted he couldn't represent ail three using the limited zypes of
material (1 to 5 dots/size unit) of the computer model. The other chiidren were only concerned with showing that steel was denser than aiuminum anc aiuminum was denser than wax, and picked specific numbers for their densities more arbitrarily.

A few of the children made no explicit attempt to represent the densities of the materials. Instead, they simply tried to represent the weights of the objects. Significantly, sone of these children erroneously used dots/size unit as a representation of weight. In adidion, one ciild who consiatently used number of squares per row as a representation of density, then chose to represent weight as number of dots per size unit.

In the post-interview, children attempted to represent apprcximately the same number of dimensions in both their spontaneous modeis and their modeis using the computer notaicion (see Table 3). However, chilaren were more likeiy to represent density when instructed to use the computer notation (see Table 2). Significantly, even some children who represented only one or two dimensions, chose to represent the density of the materıais when using the computer notation. This never occurred in their sportaneous models where density was represented only by those attempting three or four dimensions. Thus the computer notation seems to make the dimension of density more salient to children.

Summary. In che pre-interview, most children used the expression "heavier kind of material", which may label a precursor density concept. However, they did not spontaneously represent this quantity when asized to construct models. By the post-interview, approximately two-thiras of the children now had separate language for talking about density and weight and could accurately portray some qualitative information about the densities of materials when instructed to use the computer model. Children were also more likely to represent density in their spontaneous modeis, aithough the sophistication of their apontaneous models in this regard lagged behind their skill in using the computer models. At no point did students sinply incorporate the computer model wholesale; instead they assimilated it to their own beiiefs, often modifying or adapting it in unique ways.

The ordering tasks

Cinildren's understanding of the word "density". A first question concerns whether children had heard of the word "densicy" prior to the pre-interview and could explain what it meant. We found that 10 of che 18 children had never heard of the word "density" and had no idea what it meant. Four children had heard of it but thought it referred to the object's weight, size or shape. Both groups of children were categorized as having no understanding of the word "density" or of the difference between density and weight (see Table 4). Thus, the majority of the children did not know or correctly understand the word "densicy" in che pre-interview. A few children gave evidence of having some partiai understanding of density--two said it had to do with whether something siniks or fioats, and one said it had to do with what a suibstance contains. Finally, one student was credited with having a clear understanding of density (at least at a beginning level): he said density referred to how packed a substance is.

Chilaren's Modeis:
Changes in the number of reievani dimensions ciniciren attempred to represent from the pre- io post-incerview

Numider oi Dimensions	Pre-interview Spontaneous Model	Pos亡-incerview Spontaneous Mode!	Post-interview Computer Mode:
1	6	0	2
2	5	7	5
3	6	5	4
4	1	6	7

Taide 4

Changes in children's understanding of the word "density" detween the pre-interview and the post-interview

	Post-interview	
Pre-1nterview	None (7)	Partiai (2)
None (14)	7	1

By the post-interview, we knew that children had heard of the word "density" since we used it extensively in the teaching sessions. Thus, instead of asking them "Have you heard of density? what is density?" we rephrased the question as "Do you think there is a difference berween weighr. and density? If so, what is it?" Now half of the students could clearly articulate a correct difference between weight and density (see Table 4). They expressed their insight that weight was a property of the whole object while density was a local property in a variety of ways: weight refers to the whole thing while density refers to a part; weight refers to the total number of dots while density refers to the number of dots per size unit; the size of an object affects its weight, but not irs density; weight refers to how much something weighs while density refers to the weight per size unit or how packed something is. A few studenis thought of weight and density as different, but had only a parrial understanding of density. They both said that smailer objects were denser (and more packed) than larger objects, but could be lighter. These children were credited with having only a partial understanding of the difference between weignt and density, because they did not articulate the part/whole distinction. Finally, the rest of the children stili could not articulate a difference between weight and density. it should be noted, however, that some of themthought there was a difference althorgh they could not articulate it, while the others explicitly aaid there was no difference.

Table 4 thus shows the change in children's ability to articuiate what density is and how it differs from weight between the pre- and post-interview. Whereas only 1 child could clearly explain what "density" meant in the pre-interview, half the children could do so by the time of the post-interview.

Ordering the cubes. Children were asked to order a set of five objects by their weight and by the density of the material each object was made of. The objects were made of varying materials and varying numbers of 1 cm cubes arranged in different shapes. The set of objects was selected so that an ordering by density was quite different from an ordering by werght. In particular, there were three objects made of aluminum: a very iight aluminum piece and two much heavier aluminum piaces. In a weight ordering these pieces would be put at almost opposite ends of the order, while they would be grouped together in a density order. In addition, there was a small copper piece which was lighter than the larger steel object. Thus, the copper object would be placed before the steel object in a weight ordering, but after the steel object in ordering of the density of the materials. A balance scale wes available so that children couid compare the weights of objects or individual cubes if they wished; indes. couid manipuiate the objects in any way they desired to help them with the task.

Because we couid not assume that children knew the word irnsity in the pre-interview we introduced the density ordering task in the foilowing way. We first had children sort the objects by the material they were made of. Any errors in identifying materials were corrected at this time and the names for the four different materials were introduced. Although some children initially made some errors in sorting by material (they were not
always sure that the small alluminum or steei cubes were mace of the same material as the large cylinders), all children seemed to readily uncerstand this part and any corrections we made. Then we asked chiidren to order the objects "according to the heaviness of the kind of material they are made of, that is according to the density of the material." In the post-interview, this phrasing was not necessary and we simpiy asked them so order the objects by the density of the msterial they were made of.

The critical question was to what extent children ordered the objects in different, relevant ways when asked to order by density than they had when aaked to order by weight. Most all of the children were able to order the objects by weight in both the pre and post-interview when the instructions were to order by weight, and articulated a relevant procedure for determining the weights of objects (1.e. lifting whole objects in separate hands and feeling the differences, putting two ojjects on a balance scale and comparing the differences). There were some errors in their weight orderings, but these errors seemed attributable either to their relying on felt weight (and being subject to, for example, the size/weight illusion for particular items) or their forgetting to check a particular comparison when inserting an object into the order (i.e., not being completely systematic in their procedure for ordering), rather than their misunderstanding what weight was. We thus used their ordering produced when the instructions were to order by weight as a baseiine for interpreting the ordering they produced when the instructions were to order by density.

In the pre-interview, half the children simply orciered the objeats in the same way they had with simple "weight" instructions, and are categorized as showing no understanding of density as a distinct quanticy (see Table 5). One-third of the children Ehowed the insight that a! the aluminum pieces should be grouped together regardleas of weight when asked to order the objects by density. However, these children failed to order the four groups of materials correctly by density. The most common error was to judge copper to be less dense than steel, because the smail copper piece was lighter than the larger steel piece. These children were credited with a partial uncerstanding of density aince they seemed t, realize that objects made of the same material have the same density, but they did not yet have a systematic procedure for determiriing which objects are denser than others (e.g., compare one cube of copper to one same size cube of steel). Only a few children were able to order the marerials correctly by density: rubber, aluminum, steel, copper. These childiren not only put all the aluminum objects together in their order, but also realized that copper was a denser material than steel even though they had judged the copper object to be a lighter object than the steel object in their weight ordering.

Table 5 also shows the progress children made in the density ordering task by the post-interview. Now the least typical response was ordering by weight, and the most typical response was ordering by density. Ten of the 15 children who did not order by density in the pre-interview made some progress in their ordering: 4 progressing to a partial understanding of density (grouping material kinds together, although not ordering the kinds completely correctly) and 6 progressing to ordering by density. Not

Table 5

Changes in children's ability to order the cubes by density between the pre-interview and post-interview

Pre-interview	Post-interview		
	None (3)	Partial (6)	Ciear (S)
None (9)	3	4	2
Partiai (6)		2	4
Clear (3)			3

surprisingly, many of those who initially ordered by weight moved to grouping materials together, while those who were already grouping like materials together progressed to a full ordering by density.

Students descriptions of their strateqies in ordering the cubes. Imediately after children ordered the first set of objects, ciney were asked to explain how they had known how to order them. In generai, their verbal explanation of their strategy was consistent with the straiegy we had inferred on the basis of their ordering and aupports the categorization of the children into three groups: those who use the same strategy for rie weight and density questions, those who use a different, partially correct strategy for ordering by density, and those who use a different and fuily correct strategy for ordering by density.

Table 6 shows how children's expianations changed from the pre- to post-interview. In the pre-interview, the dominant strategy for the density task was to weigh whole objects on the balance scale or conpare their weights proprioceptively. These children thus articuiated the same strategy for the weight and density tasks, and are categorized as showing no understanding of density. Most of the rest of ti,e children said they could tell by looking at the materials, or by putting together the materials with the same name. Since they implied that objects made of the same materials had the same density, they were credited with a parriai understanding of density. However, they did not articulate an expicit procedure for ordering by density: such as, comparing the weights of equai size pieces. Finally, one child was able to articulate such an expiicir procedure for determining the density of materials, and was thus categorized as having a clear understanding of density. By the post-interview many more children articulated a clear strategy for inferring relative densities (see Table 6) and the majoricy of children ar least articulated a partially correct strategy for determining densicies.

In general, there was a strong relation between cinildren's pattern inferred from their behavior in ordering and their expicit expianacion oi their ordering. Twelve out of 18 children gave an expianation consistent with their inferred paitern in the pre-interview; 13 out of 18 in the post-interview. In 10 of the 11 cases where there was a mismatch, their explanation of their strategy was 1-step beiow their inferred partern (children who ordered by material, simply referred to the weighis of objects; children who ordered by density, simply referred to the materials). Thus, it seens children's ability to use a stracegy may precede their ability to verballze it.

Ordering the cylinders. After children had ordered the first ser of objects, they were presented with three new objects (a small sieei cylinder, a slightly taller aluminun cyinder, and a very tall aiuminum cylinder) and asked to insert these objects into the order chey had just produced. When ordering by weight, all three objects come ar the end of the order because they are clearly much heavier chan the objects made of cubes, and the small steel cyiinder is equal in weight to the iarger aluminum cyiinder. However, when ordering by the densicy or maceriais, these objects need to be placed with the objects made of the same materiala in the earlier orders. This portion of the rask thus tests how strongiy

Changes in chiliren's ability to describe a distinct gtrategy for ordering by density between the pre-interview and post-interview

Pre-inierview	Post-interview		
	None (6)	Partial (5)	Clear (7)
None (11)	5	3	3
Partial (6)		2	4
Clear (1)	1		

children believe that objects made of the same materials nave the same density. Because the objects cannot be decomposed into littie cubes tinere is no way they can directly test or compare these cylinders with the otner objects.

In the pre-interview, cinildren overwhelningiy ordered che cylinders by weight for both the weight and density ordering tasks; thus the majority of children are categorized as showing no understanding of density on this subtask in the pre-interview (see Table 7). Only 4 children put the cylinders with cubes made of the same material. Since 3 of these 4 children had ordered the cubes aimply on the basis of kind of material (and not density) it is likely that their auccess reflects simply a strategy to put like materials together rather than an ability to imagine that an equai size piece of the cylinder would weigh the same as a small piece of the cube. They are tinus credited with oniy a partial understanding of censity. Only the one child who both sorted the cubes by density and placed the cylinders with like cubes made of like materiais is credited with a ciear underatanding of density.

By the post-interview, the majority of children showed at ieast a partial understanding of density in their ordering of the cylinders. Seven not only sorted the cubes by density but put the cylinders with their respective material kinds. Four other children had also progressed to showing a partial understanding of density in this task: two inltialiy started to order by weight but then when the experimenter reminded them of the question they were able to think their way through to the correct answer: and two who had formulated a partially correct understanding of density in the cubes task (the smaller objects are denser because they are more packed) proceeded to apply this rule to the cylinders as well.

Sumaary of the ordering tasks. In all, there were four ways children's understanding of the difference between weighi and density were probed in the ordering tasks: (1) asking children to order the first set oi objects by weight and density: (2) asking children to explain how they had ordered them; (3) asking children to ingert three cylinders into the order: and (4) asking chiidren to explain the meaning of density (in the pre-interview) and to explain the difference between weight and density (in the post-interview). Looking at children's answers to these questions as a whole allows us to see some of the ways their understanding of density changed from the pre- to post-interview.

In the pre-interview, the majority of children (12) showed no understanding of density in the ordering tasks. They ordered the cubes and cylinders essentially by weight with both density and weight ingtructions, explained their strategy for ordering solely in terma of weight, and siowed no understanding of the meaning of the word "density". Some children (5) showed a partial understanding of density in the ordering tasiss: they ordered the cubes and cylinders consistently by material. or vacillated between ordering the cubes by density and the cylinders by materisl. Given that they did not have a ciear understanding of the word "density", cie locution "heavier kinds of material" wis sufficient to at ieast focus tinen on materials. Only one child clearls 'erstood the word "density". He also correctly ordered both the cu
and cylinders by density and
thanges in children's ability to order the cylinders as well as the cubes by density between the pre-interviewand post-interview

articulated a correct strategy for inferring the relative densities of materials.

By the post-interview, haif the children showed a fairiy ciear understanding of density by ordering the cubes according $\tau 0$ density and then either explicitiy articulating their strategy and cleariy explaining the difference betweer weigit and density or correctly inserting the cylinders into the order. Some other children now had a partial understanding of density: two could clearly articulate the difference between weight and density but did not fully apply this undersianding to the ordering; and two had formulated an explicit (but incomplete) understanding of density which they consistently applied in the ordering tasks (they knew denser materials were more packed and incorrectiy assumed smaller objects were therefore denser). Thus, in contrast with the pre-interview where the majority of cinijdren revealed no understanding of density in the ordering tasks, the majority now had at ieast a partiai understanding of density in these tasks.

The sinking and floating tasika.

Children's ability to formuiate a general rule aboui whar siniks and what floats. Children were first given eight objects to see how they behaved in water. The objects were made of four different materiais: two materials that were denser than water and two materials that were iess dense than water. The objects were also of varying sizes, so that for each type of material, one object made of that material was heavy and one was light. After trying each object in the water and noting which ones sanik and which ones floated, children were asked: "What kinds of things sink and what kinds of things float?" "Can you make a general rule that will allow us to predict what things will sink and what things will float?"

In the pre-interview, all but three children attempted to formuiate a rule for why things sink and float. These rules were of two general types: (1) rules baged on weight (heavy things sink and light things float) ana (2) ruies based on kind of material (heavy materials sink and lighter materials float). Children who were unable to formulate any ruie or who only came up with a rule based on weight were categorized as not yet understanding the role of den .ty in sinking and floating, while the children who expressed the rule in terms of kind of material were credited with a partial understanding. No child formulated a ruie siriciiy in terms of density, although three mentioned density along with the factor of weight. 'ihese children were credited with having oniy a partial understanding because they had not yet focused on density as the soie integrating variable. Thus, overall in the pre-interview children were fairly evenly split between having no understanding of the roie of densiry in sinking and floating and having a partial understanding (see Table 8).

Table 8 shows that, by the post-intervjew, children's ruies for sinking and floating had become more sophisticated. Now oniy a few children could not formuiate any rule or formulated a ruie oniy in terms of weight (the no understanding of density category). The rest formuiated a rule either based on heaviness of kind of material or expiicitly in terms of density. Anong the children who focused explicitly on density as the

Changes in children's ability to formuiate a generai ruie for sinking and fioating between the pre-interview anc the post-interview

Pre-interview	Post-interview		
	None (4)	Partial (7)	Ciear (7)
None (10)	- 4	5	1
Partial (8)		2	6
Ciear (0)			

key factor, three simply said that dense materiais sink and iess dense materiais float, while four fully explained that materıals denser than water sank and less dense than water fioated. Thus, the majority or children cleariy improved in their ability to state a generai ruie about sinking and floating between the pretest and posttest.

Predictions about the sinking and floating of objects. Children might, of course, have correct intuitions about what types of things would sink and float without being able to formulate a general rule verbally. Thus, a different way to assess their understanding of sinking and floating 13 to show them one object made of a certain material (which sinks or floars) and then ask them to predict whether another object made of the same materiai, but radically different size, would sink or float. Children were shown a skall piece of wax which floated and were then asied whether a iarge wax piece would sink or fioat and to explain their prediction. Simplariy, they were shown a medium sized aluminum cylinder which sank and were then asked to predict whether a small aluminum paper clip would sink or float and to explain how they knew.

Table 9 shows children's ability to predict whether the large wax piece and amall aluminum paper clip would sink or float and to explain their prediction by invoking the idea that the two wax (or aluminum) pieces were made of the same materials (and/or had the same density). Again, there was a shift from the pre-interview to post-interview in the dominant category of response. In the pre-interview a large group of children made at least one incorrect prediction and gave at least one justification in terms of the weight of the object (the large wax object will sink because its heavy: the small aluminum object will float because its light). These children clearly did not even have the correct intuitions about the problen, and were categorized as having no understanding of the role of density in sinking and floating. A second group of children made correct predictions but could not explain their predictions in terns of gameness of material or density. Thus, they correctly predicted that both tie large wax object would float and the paper clip would sink, but then expiaired their predictions by invoking the weight of the object, or the fact tiat the paper clip had holes in it, or offered no explanation at all. Secauge their correct predictions were not accompanied by a ciear expianation in terms of sameness in density or material, they were crecited with oniy a partial understanding of the relevance of density in sinizing and fioating. Only one child in the pre-interview was able to give both predictions and explanations which indicated she clearly understood the relevance of density. By the poat-interview, half the children now gave ciear predictions and explanations ef their predictions using the notion of common material or density.

Children's descriotions of why an object siniss in one ijausd anc floats in another. The final phenomenon chidren were shown was that a piece of lucite floats in one licuid (salt water, colored witi biue food coloring) and sinks in another (plain water, colored with red fooc coloring). Children were asked to explain how this could be.

In the pre-interview, many children had no idea why this couid be, talked loosely about there being different chemicais in the water, or had

Changes in children's ability to predict and explain tie - sinking and floating of wax and aluminum between the pre-interview and the post-incerview

Pre-interview	Posc-interview		
	None (8)	Parial (1)	Ciear (\%)
None (14)	7	0	7
Partiai (3)	1	1	i
Clear (1)			i

the wrong intuitions about the phenomena (i.e.. they talked in terms of tie tiniciness/tininness of the water, but then argued the water in winich the object sanix musi be thiciker because it exeried more force on the object to push it down). These children were categorized as not understancing of tie role of density in this situation (see Table 10). The rest of the ciidiren also gave intuitive answers, but their intuitions were basicaiiy correct. That is, they talked in terms of the thickness or tininness of the liquid (or the amount of air in it, or its strengti), and then argued tinat thicker liquids could support objects that thinner liquids could not. These children were categorized as having a partial understanding of tie role of the relative densities of objects and liquids in sinking and fioating. No child in the pre-interview explicitly discussed the situation in terms of relative densities.

Tajle 10 shows that by the post-interview a numjer of cijiciren iad increased their understanding of tinis situation: some progressed to having clear intuitions about the situation while others moved to being abie co talk about the phenomenon in terns of relative densities.

Sumary of sinking and floating tasks. Children's understanding of the role of density in siniking and floating was assessed in three ways: (i) by their ability to formulate a general rule governing siniring and floating; (2) by their ability to predict and explain whether wax and aluminum would sink or float, using the idea of sane naterial and/or density: and (3) by their ability to expiain why an object sank in one liquid but floated in another. Agein, we looked at individual children's patterns of responding across these questions to see now weli they understood tise phenomena of sinking and floating, and in what ways their understanding developed from the pre-interview to the post-interview.

In the pre-interview, children were split into two main groups: tiose who had no intuitions about the role of density and materials in sinining and floating (7 children), and those who may have nad some beginning intuitions (iO children). Cnildren were categorized as having no inciuieions about the role of density in sinking and floating if they were unabie to formulate a ruie which referred to materiai kinds and í they did not maine correct predictions aiout the wax and aluminum objects. Chiliren were categorized as having some beginning incuitions if they were ajie to eitier (1) refer to material kinds in their generai ruie about what thangs sinit and fiost and give intuitive explanations about wiy the lucite couid fioat in one liquid and sink in another; or (2) make correct predictions aiour whether the wax and aluminum would sink or float (without being able to consistently explain their predictions). At this stage, children's ability to appeal to material kinds in their general ruie was higily correiated with their ability to have correct intuitions about why the lucite sinirs or floats in the red and blue liquids. However, children's veribaiizations were not predictive of tineir ability to give consistent predictions about the wax and aiuminum. Oniy one child was aile to show such consistency in the pre-interview.

By the post-interview, haif the children showed consistency in understanding of sinking and floating. Not only couici these chiidren correctly predict whether the wax and aluminum would sink and float, they

Changes in children's ability to explain why the lucite fioats in the blue liquid but not the red liquid between the pre-incerview and the post-interview

Pre-interview	Post-interview		
	None (4)	Partiai (8)	Ciear (6)
None (8)	3	3	2
Partial (10)	1	5	4
Clear (0)			

could explain their predictions in terms of the materials or densities, and had formulated a general rule consistent with their predictions. Seven of these nine children also used the word density in cheir verbai formulations, whiie the others taliked simply in terms of heavier ixincs of nateriala.

Sumpary: cinildren's understanding of density

Overall, children were elaborating a distinct concept of density as a result of the teaching in a variety of wsys: learning a richer mode: for representing density and a new language for talking about density, iearning how to order objects by relative densities, and learning how to appiy a concept of density to predict the sinking and floating of objects. A fina? question concerns the interrelations arnong tinese deveiopments: (\because) $=0$ what extent was success at ordering dependent upon the child's correct assimilation of the computer model and acquiring an ability to verbaiize the difference between weight and density? and (2) to what eiten was success at understanding the roie of density in sinking and floating dependent upon the child's success with ordering objects by density? Tabies 11 and 12 show that performance on the various tasks was highly inter-related.

Consider first the relation between ordering the cubes by censity and being abie to represent density correctly with the computer model or articulate the difference between weight and density (Table 11). Understanding the differance between weight and density (as refiectec by proper depiction of density using the computer model or veriol articulation of the differences between weight and density) appears to be necessary but not sufficient for successful ordering of the cubes by density. Every child who was successful at ordering the cubes by density gave evidence of understanding the distinction between welght and density in one of these two ways. However, a few children who gave evidence of such undersiancing, still failed to order correctly. The rest of the chiidren who had' difficulty with ordering had given no evidence ofa basic understanding of the distinction between weight and density.

Tabie 12 aiso snows there is a relation between being abie $=0$ order the cubes by density and being able to articulate a rule for sinixing anc floating explicitly in terms of density and then use this ruie to make correct predictions anout wax and aluminum. Six of the seven chijiren wio formulated a rule for sinking and floating in terms of density also successfully ordered the cubes by density; but there were a number who successfully ordered the cubes by density who did not appiy this understanding to sinking and floating. Thus, having a ciear concept of density may be necessary but not sufficient to ensure application to the area of sinking and floating.

Children's undergtanding of modeing

Ultimately, we are interested in developing children's meia-conceptuai understanding of modeiing as a tool of science and of criteria for evaluating good modeis. In such teacining, we are interested in conveying to children that models can be abstract (depicting ldeas, and not

Tabie il

The relationship between cinildren's ability to order the cuies by density and their uncerstanding of density as an intensive quantity (post-interview only)

	Ordering of cubes			
Uncierstanding of the				
int.ensive nature of density	Use density	Do not use censity		
Articulate explicit				
difference berween				
weight and density	9	3		
and/or represent				
densiry correctly with computer model				
Do not show such				
understanding	0	6		

Tabie 12

The relationship between children's ability to formuiare and use densiry in density (post-interview oniy)

Ordering cubes	Sinking and fioarıng	
	Use density	Do not use censicy
Use density	6	3
Do not use density	1	ช̇

necessarily concrete objects): that good modeis need to be consistent and accurate, and quantitative where appropriate; and finaliy that modeis shouid be evaluated for their usetulness for specific purposes and not for underlying truch. At this point, however, we only began to broach these subjects with students in our teaching; and through our individual interviews we were able to assess oniy the extent to which student's may have understood these points intuitively while constructing their own spontaneous model.

In an earlier section, we reported what dimensions children attempted to represent in their spontaneous models and noted that children increased in the number of dimenaions they represented and in their likelihood of representing density from the pre- to post-interview. in this section, however, we report on two aspects which bear on the overall quality oi the representacions: the consistency with which chiidren were abie to represeni a particular dinension (for the five objects in question) and the sophistication of the type of code. Let us consider each in turn.

Consider first children's ability to represent a dimension consistently in thair models. For each dimension that childiren attempted to represent, they were scored as being either partially or fully consistent in their representation. There were several ways the child could be credited with only partial consistency. First, sometimes the chiid represented a dimension for only a subset of items: for example, representing the weights for the three same size items, but then not representing the weights for the two equal weight items. Or, chiliren might be conaistent in their representation of a particular dimension only locally, but not across all five items. For exampie, the child might show the three same aize items to be the same size, and the two equal weight items to differ in size, but not correctly show that the size relation between these two subsets of items. Or sometimes the choice of representation captured only some of the important properties of a dinension. In contrast, full consistency required that one be able to tell the relationship among ali five items on the dimension in quescion.

Table 13 shows the degree to which children represent a dinension consistentiy in their pre- and post-interview spontaneous mociels and in their post-interview computer based models. The striking aspect of the results is that while more children are able to represent material and density in the post-interview models in a consistent fashion, children decrease in the consistency of their representations of size and weight in the post-interview. Of course, overall the number of dimensions consistently represented remains the same, while the number of dimensions attelap亡ed (alibeit inconsistently) increases. Since children were attempting to represent more dimensions, they may have been too overioaded to represent them ail consistently. Further, it may be an initial consequence of strengthening their density concept, that their size and weight concepts are correspondingly weakened. Since our ceaching focused primarily on understanding density and our computer model makes densicy the most transparent quantity (with more calculation neeced to represent size and weight correcrly), we may simply need to pay more attenion to rie concepts of size and werght in our future teaching.

Number of Children Showing Conslstency in Representing Different Dimensions in the Pre- and Post-Interviews

Consider next the type of picture code children used in their models. Children were acored as using one of four cypes of cocies: verbai code (in which they deacribe a dimension in words), pictorial code (in winci $=$ hey represent a dimension as they aee it), numeric code (in which they represent a dimension as a sumary number), and symbolic (in which they represent a dimension in some abstruct way). Table 14 sho:s the number of children using ach type of code for each dimension. There is a big increase in the number of children using symbolic type codes from the pre-interview to the poat-interview, with the number using the other types of codes remaining fairly conscant. By the post-interview, this is the dominant type of code for each dimension. At the same time, there is some variation from dimension to dimension in tipe of code typically elicited (especially in the pre-interview). Size brings out a tendency to represent pictoraally, with many children uaing perarective to depict the cyinder shape of the objects. These children may nct have fully distinguished between a picture and a more abstract rendering of objecta (two children even put in a repreaentacion of the circular tops of the objects in their drawing with the compuier model--although the experience with the computer model had always been with squares). And weight seemed the one dimension that initially brought out use of numeric codes. Periaps this reflects tine fact that it is the only dimension which is easy to measure direcrly (put it on a scale and read a number). Measuring size and denaity is muci more indirect.

Overall, however, it was clear that most children were comfortaole with using some abstract and symoolic representations in their modeis. This was shown not only by the fact that they ignored the shape of the object in depicting the size, but also by the fact that when they used color codes for material, or heaviness, they frequently used coiors that were different from the actual colors of the objects (e.g., they had green or blue stand fior aluninum), or used the dots per size unit code for denalty.

Discussion and Conclusion

In general, our reaching strategy proved to be moderateiy successíui with this group of 6th graders. Our ann was to heip consoiidace their understanding of the discinction between weight and density by heiping tien understand that weight was an extensive quantity and density an intensive one. We provided a visual model in which the quantities of size, werght, and density were all salient, to help them see that adding material to an object changed its size and weight but not its density, and gave them an explicit language for talking about densities in terns of the modei. Eurther, we explicitly taught them a procedure for ordering oijects by reiative densities, embedding the teaching of this procedure with instruction in the basic model which wouid allow them to understand why this procedure makes sense. Sinally, we involved students in experimencing with compurer simulations of sinking and floating, ard directec them towards extracting a predictive rule involving the relative densicies o: oijects and liquids in understanding this phenomena. We found that the majority of children did correctly assimilate this model in a way that supported their unserscanding of density as an intensive quantity, and were able to articulate somie relevant differences between weight and density.

Tajie i4

Xumber of Children Using a Particular Type of Code in Represencing Different Dimensions in the Pre- and Post-Interviews

Further, there was evidence that distinguishing weight as an exrensive quantiry and density as an intensive quantity heiped tinem to understand winy in ordering objects by relative densities, it is necessury to compar? equal size pieces. Oniy the chiidren who nad correctiy internalized cie difference between weight and density were able to remember the ordering procedure we had taught. Finaily, a ciear understanding of the distinceicn between weight and density was important in being able to apply such an understanding to the phenomena of sinking and floating.

At the same tine, we found that not all the children were aide to correctly assimilate the model, or to verbally articulate the difference between weight and density. Further, we suspect that many of the ciilicen who correctly assimilated the model were not yet abie to deepiy understand the theory underlying it (that is, they did not sponianeously extract the mathematicai reiations depicting tine relations among the three quantities). Thus, it is imporiant to consider what kinds of difficuities arise in assimilating/underotanding the model and how these difficulties can be addressed in future teaching efforta.

There were two main types of errors children made in assimilating the model: (1) some aeemed to remember only that number of size units represented aize, and totsl number of dots representi." cotal weight, ignoring how the model represented density; and (2) citiser children again focused only on the representations of size and weify (iznoring derisicy), but these children incorrectly assumed number of docs per aize unit was a repreaentation of weight. We had thought that the tharee distinct variajies in the computer model would be obvious to the chilisen, and given tiat children have at least three distinct dimensions in their intuitive theory--size, weight, and heavy for size, they could make the mapping between these concepts and the model. Both types of errors, however, reveal children's failure to make any mappi..; between their precursor density concept and the model. There are ai least two distinct explanations for this difficulty. perhaps these children did not have a weil enougí developed precursor density concept to make even this initial mappang. Since we did not give an exrensive battery of tasiks designed to assess suci an early concept (as did Smith, Carey, and Wiser), it is hard to rest Eiis possibility with our own data. But we suspect tris is not che compiece explanation since most of these chilaren did tall of materiais as jeing heavier kinds and were able to invoke a compenseinon arguaent to expiain why the large aiuminum object could equal the small steel objec: in weigint. Another more plausible explanation 18 that the way that tie compuier modei is introduced to children with teaching activities could be improved. Ir. our teaching, modeling was introduced at the very beginning, with very little explanation or notivating context. It nay be inportant that children are first introduced to activities winch invoke tieir pre-exišing concepts of size, weight, and density, and then a situation couid be presented where modeiing is seen as helping children soive some probied (see chapter 5 for a fuller discussion of what these changes in ceaciang approach might invoive). This would ensure that more students were thinking about the modeiing tiasi in a conceptuai manner racier rinan as an arbitrary jumble of symbols to be learned in a rote fashion. We suspect that those children who made the error of mapping dors per size unit wi=i weight were samply approaching the mapping tesi in a superícial manner.

In the real world, weight is a more salient quantity than censity since we can feel the weights of objects siaply by hefting chem. In the computer simuiation, however, dots per size unit is more sailent tian totai number of dots-both because it $1 s$ more immediateiy quantifiabie (without recourse to tedious counting) and because i= is a varıabie the child can directiy manipulate. Thus, the child may be simply mapping the $* \cdots$ most saiient variables without thinking deeply about underlying meaning. Providi's a more meaningful context for doing the initial modeling activities may de enough to help these children understand the computer model correctly.

Our experience with teaching also helped us identify other piaces where our approach to teaching couid be extended and improved. We found that even the children who correctly assimilated the modei, spontaneousiy assimilated it oniy in a qualitative way. They were concernec wici portraying witich materials were denser than others, but were not yet concerned with issues about how much denser. This in turn ied them to have problema with correctly representing welght (in particuiar, objects mace of matewiais of difierent densities which were equal in weight), aitiougi most children were not too concerned with these problems. Indeed they represented the size and weight of objects in very rough and approximase ways. This is probably fine and appropriate for a beginning; indeed, we explicitly tried to build only a qualitative understanding of the modei in our present teaching. Howevei, uitimately, we would like them to expiont the model's cuantitative potential and to think more preciseiy abour ail three quantities. Our experience suggests that explicit teaciang activities will need to be developed to motivate students to see the relevance of greater precision, and to grasp the mathematical inter-relations among the quantities. This level of uncerstanding of the model does not occur simply spontaneously.

Another area where the teaching unit shouid be expanded concerns the unit on sinking and floating. We suspect that the reason that not all children who were able to develop a concept of density couid appiy it in understanding sinking and floating was that we did not give them enough time to expiore these phenomena. It was the shortest aspece of the teaching (2 sessions), even though it was one of the most naturaiiy intriguing and motivating to the students. Indeed chiidren uniformiy reported that they liked this aspect of the whoie eaching unit the best. Further, although there was much they did not uncerstand about this situation, it was one of the few areas where they often had good initiai intuitions. Thus, in the future, we plan to begin by posing some puzzies about sinking and floating before introducing the problen of modeiing as a way of setting a context for those activities and allowing them to have more time to explore the phenomen both with reai worid materiais and the computer program. Indeed, we can organize the whoie teaching unit more centrally around these phenomena.

Finaily, our teaching experience suggested some ways that we mignt expand the range of modeis presented to chiliren for their consiceration. One of the striking aspects of the data was that although the majority of ciildren understood the modei and could use it appropriazeiy when explicitly asked to, few spontaneously chose to use the modei when initially asked to represent the five objects presented in the
post-interview. Children commented that they found the model useful, and sone who did not use its visual aspects spontaneously, did use tine language of the model to express themselves and clarify their thoughts. Nonetheless, we had the impression that there were several respects in which the model may not yet be a "natural" one for children and that ic may be important to motivate the need for such a model by contrasting $1 t$ with some more natural models. Further, some ideas of what models they find more "natural" come from an examination of their spontaneous drawings. In particular, in the pre-interview, the two children who attempted to represent the density of materials did so by showing materials of varying shades of gray or with varying layers of color. Such a model has the advantage that it portrays materials as well as densities as being essentially continuous--which seems closer to what children encounter in everyday life. Further, it adopts only a qualitative depiction of densify, which is in keeping with tie e child's level of concern. And in many respects it is a very good model, one that can be used to aeveiop their qualitative understanding of density as an intensive property. Our model. in contrast, may seem to have too much unmotivated baggage. Thus, 25 may be useful to begin with a model more like the ones developed dy some of the children: we could then discuss the model's strengths and limitations. One obvious limitation is that the model does not allow one to represent information about size, weight, and density quantitatively. we could caen present a problem which calls for quantification so that chilicren become aware of this weakness in their model and then introduce our model as one way of portraying these dimensions more quantitatively.

Overall, we remain convinced that our approach to introducing upper elementary school children to density by involving them with modeling is a very sound, as well as a very rich one pedagogically. The children looked forward to the classes and showed some abilities to appreciate the use of computer as a modeling device. Next year we plan to build on what we have learned and develop a more extended unit that will not only give thea greater time to build a concept of density but more time to appreciate at a meraconceptuai level the role of models in science.

CHAPTER 5

some thoughts on next year's teaching

From our experience this year, we have learned several iessons that an help us reshape our plans for the teaching experiment next year.
(1) Most studenta have a very good conception of materiai. They know how to distinguish among different materials, and they perceive each material as having distinct and specific properties such as hardness or color. Therefore, in promoting understanding of density as a local property, we will build on the notion of material kind.
(2) From a motivationai point of view, the sınking and fioating programs seem much more compeiling to the stucents than the weight/ vensity program. After the post-intervention interviews, we asked stuciencs to comment on what they liked most about the teaching sessions. They agreed nearly unanimously that the sinking and floating programs and activities were the best part. Consequently, we will try to use this phenomenon as a framing context for introducing density and modeling, rather than developing these concepts separately or in isolation.
(3) We found that not all students had a clear understanding of metaconcepts. When students are given a task that requires them to implement metaconcepts such as ordering, or finding a general ruie, we think it will be helpful to support the tasi, not only with expianation, but with a set of related activities. These should be arranged in increasing order of difficulty from very simpie to more compiicated and pegged to different contexts, starting close to the studenta' every cay experiences and gradually guiding them to our subject. For instance if students have to order, we might start with 3 objects and then move to more. Or, if we ask them to look for rules, we might start with ruies they use in games. These techniques wili help estabiisin terminology and make concepts explicit.
(4) So far, our lessons have avoided discuasion of voiume by using zie "size" variable instead. However, many students co not assume that size means volume, and we now think it will be mpossibie to contince in this way without risking confusion about what we mean by size. This probiem 19 most pronnunced in the ordering rasks and in relation to floating boats where students need to deal directly with volume. Next year we wiii introduce the concept of volume in wore explicit ways, perhaps by using a variation of the siniking and floating programs to do water displacement.
(5) Although nost students understood density as dots per size unit in our inodel, some also confused weight with dots per size unit. In helping them shift attention to the concept of density, we shouid aiso rennforce weight as a separate dimension, one that they are already familiar witi. we will therefore also give problems that higniight weight. For exampie, we might have students build or change objects on the screen, so that their weights are equal, even though they are made of different materiels.

Since students will have to think about density more quantitaiiveiy in order to soive this type of probien, we could institute a more fiexibie range of material kinds in the program. This would make it possibie to change the number of dots/size unit of availabie materiais beyond the current range of one to five, and in different ratio if needed. Because it is difficult to find real materiais with densities specificaliy in the 1:2:3:4:5 rinio, this modificaton would also afford greater fiexibility and accuracy in representing reai materials.
(6) This year's teaching also showed that students needed more wori on modeling. Their "picture codes" were sometimes inconsistent and/or indistinguishabie from ordinary pictures. We wouid iike to spend more working on the criteria for a good modei and now modeis might difier from pictures.
(7) This year we found ourseives "presmting" the models anc mazeriais to students more than we think is desirable. In the future, we wiil strive to create a classroom environment in which we raise some initiai questions, while leaving as muci room as possible for students to do their own investigating, exploring of materials, and question raising. The rssue of finding a middle ground between a lot of structure or constraints and unstructured free discovery is an important one to address. We wiii be as well prepared as possibie to conduct or facilitate unstructurec and unexpected inquiries. The few cases in which this happened this year were the liveliest and most exciting. We also iearned about some of students' spontaneous models for representing density that can be incorporated into our lesson plans.

REVISED PLANS FOR NEXT YEAR (UNITS 1 \& 2)

To integrate all this learning into our lesson pians, we pian co siari fros some phenomena of sinking and fioating and raise a reai-worid question: What sinks and what floars?

Each child will have a kit with a tui of water so that he or she can do experimentation and collect data with all kinds of objects and materiais. We wili ask students to find all the "sinkers" and "fioaters." We can also asiz children to bring objects and materiais that chey finc (limited to homogeneous, bulky objects) and divide chem or classify them according to the "sink or floet" criterion. We wouid want co inciude objects made of the same material in different sizes.

Once they have accumulated some information about the benavior of reat naterials, we will encourage students to look for a ruie. in a way, what we are trying to teach, from a scientific point of view, is not the theory of sinking/floating, which includes an explanation of che phenomena. Rather, we are trying to find an indicator: that is, we want to zind tie relevant property of materials that wili enabie us 50 predict what wi:l sinis and what wili fioat, without expiaining why. We want to answer the question, "when do things sini, or fioat?" and not, "wiy?" The basic: process for doing this is sorting and clussifying, and the process has two interdependent elements: the search for the criterıon itseif; and the very
process of ciassification once we know the criterion. Both elemencs are on the metaconceptual levei anc deserve speciai attention.

As they search for a ruie, children wili express their ldeas ajour what rules are, what they mean, and how one ciecks whether or not a perticular rule is correct. The meaning of contradiction or conilicting evidence will come up in these discussions. We may be able to use games, sports, the legal/courtroom environment, or other metaphors co deveiop these ideas.

This part of the unit should be developed fuliy to ensure that students have a good preliminary understanding of the meaning of a ruie. Since the rule we are looking for is a "sorting-rule" for nature. we wili iooi for simple activities and exampies from students' immediace environment where one appiies sorting-ciassification ruies, anc inen curn attention to the probiem of sinking and fioating.

Once síudents have suggested some ruies for sinking and floaíing, sne next step will be to check them experimentaliy. They should suggest experiments, which they will perform themseives, to valiciate or invailcare each suggestion. These experiments will generate more data that wili be or lected in the students' notebooks. Tine aacerials for the Elemencary Science Study "Clay Boats" unit include a scaie and other components that might be adapted to our purposes.

During tinis process of answering the question, wiat sinks and fioars, we will collect students' ideas in written form, sort them, and present then to the class. This procedure -- collecting atudent responsea and presenting them, or having studentis debate their positions -- wili be repeated several times during our entire series of lessons. Students may draw a tentative conclusion at this point that the sinixing/fioating critericn has something to do with materiai kind.

We know that children perform best when woriking with a limitec number of variables. In our case, there are many variabies which could ail je checked among different kincs of materials anc within materials (of different sizes, weights, colors, and so on). To avoid coniusion, we wili proceed in a structured way.

To provide structure we will propose to siudents an adiitionai systematic process of classification, not dividing the objects inco sinkers and floaters, but reorganizing them into famiiies according to their material kind (for example, placing all pieces of aluminum or steel in one group). At this point, we can use sink-float in a different way, to see whether it can help us distinguish materials. If two materials look tie same (for example, two pieces of painted wood, or a lump of wax and a lump of clay that are the same color) can gink-float help us ciassify them?

After reorganizing objects intc families, we wijl uge experinerterion to elimınate size, welght, and shape as factors in predicting whar wii: sink and what will float within a family. it will not in necessary ye: cefine volume because when comparing two objects of diśferent size, no
matter what definition of size is used, the experiments wili show that the result (sink or fioat) is independent of size (within the famīy).

Once everyone agrees that materiai kind aione defines an ojject's behavior, we will zave another example of a "iocai proverty" that is discovered and demonstrated in experimencs: that is, "sinixingness" or "floatingne3s." We will then have a working theory: materials can be divided into families of material kind where some families are sinkers anc some are floaiers. Once students find out from books or experiments which family a given object belongs to, they wiil know about all its reiatives, that is, other samples of the same material. This rule works perfectly in a constant liquid. (We have not yet introduced the roie of the liquid; we suspect it will be best to postpone this discussion uṅil a iater scage anc to examine ail the phenomena in one iiquic: water.)

Next, we will want to see whether this ruie can je generaizer across families. First, from a ciassification point of view, we wiil now form two tribes: the sink tribe and the float tribe. Tribes are made of families, and families are made of members. We want to heip studenis discover whetner all the families that belong to one tribe share a common characteristic.

What is it about a specific materiai that makes it a floater or a sinker? Our intuition is that chances are very low that a stucient wiji coae up with density as the parameter. Nevertheless, we will be yrepared to handle questions and answers about the heaviness of a materiai. We wili introduce the idea of crowdednesa in preparation for density and apend some time clarifying crowdedness as an intensive property that is a function of the two elenents, weight and size.

Assuming that density will not be a readily available cricerion, we might also raise the question: What if we don't know ail the information needed to make a judgment? Sometimes special tools are needed to maine hidden things clear. X-rays help us see insice suitcases at the airpor:. Sometimes we need to use imagination to expiain or jescrije nature and events. We migint suggest that students aiready have a feeiing for wha: distinguishes sinking and floating materiai kinds, jut that they don'E as yet have a name for it. Indeed, there may be properties of materiais they have never discussed or thought about before.

We might start this phase by asking students to represent those proverties of a tribe member that aake it belong to the trije. At this point we wiil introduce the idea of building visuai modeis that cepict or represent some of the properties that they come up with as cnaracieristic of different tribes, including the concepi of crowdedness that we initroduced.

Again at this point we will repeat the process of asking for szucienis' suggestions, éhis time about now to represent crowciednes3, anc we wil: connect this tio discussions about represencations in general. we wiji craw on other contexts where representations anc crowdecness piay a roie. fie can move gradually from icons that are used on the higinways, for exampie, to maps, and co more abstract forms. This concepr musc be very carefui:y
deveioped. We will spend time on the meaning of crowdecness as an intensive quantity and on modeling crowdedness in real iife situations: hoteis, their homes, stores, grocery store shelves, concer: haiis, anc beaches. We want to make sure that students distinguish between totai amount and amount per size unit.

We can use aiso multi-sensory approaches to develop the concept of crowdeciness -- feeling it (arrangement of people in the room), hearing it (beads in a box, like a maraca), seeing it (intensity of color in sinted water), tasting it (degrees of sweetness or saitiness). We can taik about "packedness" and relate this to weight. We might al.o iook at and use powders, sawdust, and/or sand to see how materiais keep or iose their properties as they are around or observed in differing amounts.

Oniy after these discussions and experimentation with real materiais can we present the computer model as a tool to soive probiems that de3i with the two dimensions of totai amount and amount per size unit, for example, candies and candies per bag. Now, we can use candies and bags of different sizes or other devices with which students can buili physicai representations for crowdedness. We may be able to do this cubically, with a cubic size unit or other three-dimensional unit standing for the two-dimensionai square on the screen.

After this preparation, we may approach the specific question of the "crowdedness" of materials. This concept can be liniked to the idea of "fairness" that children are already familiar with: if we are going to compare the crowdedness of two fielcis, we would want the fields to be the same size; then we could count the people. If we are comparing the number of chips in chocolate chip cookies, we need to use equal size cookies and then count the chips. For the time being, in order to be fair, we must compare the weights of equal size pieces. Later we will learn a fair way to compare when the pieces are not of equal size.

This discussion wiil introduce the idea of controiling a variable. This is an important concept, and it is crucial that students recognize and undergtand the variable (size, in this case) being concroiied. in this year's teaching, we found the computer model to be usefui in ioiping sian uncerstand why we hoid some parameter constant. Students readiiy graspec the idea of comparing individual squares to figure out densi=y.

By this point we expect to be abie to introduce the idea of densiry of materials (homogeneous and bulky) and liquids and to look for ways to define the density of the materials students have gathered. We wiil be trying to help them discover whether this is an intrinsic property too. We will concentrate on finding some methods or procedure co determine density. The computer representation will help them understand why these procecures are valid.

Depending on students' grasp of the concepta up to rins juncrure, we may ci may not be abie to move on to the process of comparing the number of times a size unit can be inciuded inside an object. In generel, we wish $=0$ build from a solid quaiftative understanding of density to a more quancitative one. To motivate the transition, we might pose the proidem of
what happens when we cannot compare equai portions of mareriais? Students are aiready familiar with the mat.iematicai operation, divisıon, fiar ailows us to break the physicai barriers.

Now we will return to the floating puzzie and reformuiate tie ruie. What is it about the materials that makes them sinkers or fioaters? By now, students will have an answer: the density of the materials. To compiete the picture, we will now introduce the role of the liquid, first as an experimental fact, and then as a way to show how we must somerimes modify a rule to accommodate new facts. Here we can use the computer riation to sumarize and reinforce the lessons and to increase students' undersianding of the quantitacive aspects of the phenomena.

We can conclude the unit with some related historical stories anc episodes -- for exar.ie, Archimedes's plizzle, or speciai materiais iìaz are extremely dense or the opposite, perhaps sinixing and fioating oalloons. The 3-2-i Contacr television series aiso contains some segments cone on neasurement, for example) that would provide an appropriare conciusion: to this unit.

Bovet, M.C., Domanidy-Dami, C. \& Sinclair, H. (1982). Conservations and decalage. Human Developrent, 25 201-214.

Champagne, A. \& Kiopfer E. (1984). Research in science education: the cognitive psychological perspective. In D. Holdzkom \& P.B. Lutz (Eds.), Research within Reach: Science Education. Wasiangton, D.C.: National Science Teachers Association.

Coie, ï. \& Raven, R. (1969). Principie learning as a function of instruction on exciuding irreievant variables. journá of Regearch in Science Teachinc, E. 234-24i.

Driver, R. \& Easley, J. (1978). Pupiis and paradigns: a review of the literacure reiated to concept development in adoiescent science students. Studies in Şience Education, 5, 61-84.

Driver, R. \& Ericikson, G. (1983). Theories-in-action: some theoretical and empirical issues in the study of students' conceptuai frameworks in science. Studies in Scıence Eaucation, 10, 37-60.

Duckworth, E. (1985). Inventing Density. Unpubiished manuscript submitted for pubilcation: Harvara University, Graduate Schooi of Education.

Enerick, B.B. (1982). An analysis of the science education orobiem of. teaching density as approached from two different piagitian researci perspectives: oderationailam and conatiuctiviam. Unpublished doctorai dissertation: Univeristy of Illinois at Uridana-Champaign.

Inhelder, B. \& Piaglet, J. (1958). The growth oi loancai thanikna from chilihood to adjlescence. New Yori: Basic Books.

Novak, J. (1978). An alternative to Piagetian psychoiogy for science anc mathematics education. Studies in Science Ecucation, ${ }^{\text {S }}$, 1-30.

Novak, J. (1982). Psychoiogical and epistermological aiternatives =o piagetiar developmental psychology with support from empirical studies in science education. In Modgil \& Modgii (Eds,), Jean Piager: Sonsensus and Controversy (pp. 331-35i). Praeger.

Piaget, J.. \& Inhelder, B. (1974). The cinid's consinuction of quantitieg. ionion: Routledge and Kegan Paui.

Rowell, J.A. \& Dawson, C.J. (1977a). Teaching adour fioazing and sinxing: An aitempt to link cognitive psychoiogy with ciassroom practice. Science Ecucation, 6í, 243-25i.

Roweij, J.A. \& Dawson, C.j. (1977b). Teaching about fioazing and sinixing: Furcher gtudies toward closing the gap detween cognitive paycioiogy and ciassroom practice. Science Education, 6i, 527-540.

Rowell, J.A. \& Dawson, C.J. (1983). Laboratory counterexamjies and the growth of understanding in science. Eurodean journai of Science Education, 5 , 203-215.

Smith. C. (1984, November). Weiant, dengity and matter: A oreiimınarv srudy of elementary cinidaren's conceprion of ciensity as an intensive quantity. Educational Technology Center Tecinical Report No. 84-5, Cambridge, MA: Harvard Graduate School of Education.

Snith, C. (i985, June). Weiant, density and matier: A siudv of eienencary cilidiren's reasoninq about density with concrete materiais anc compuier anaiogs. Educatıonal Technology Center Technicai Report No. 85-15. Cambrıdge, MA: Hiarvard Graduate Scinool of Education.

Smith, C., Carey, S. \& Wiser, M. (1985). On differentration: A Case study of the development of the concepts of size, weıgnt, and densizy. Cognition, 21, 177-237.

Snir, J. (1986). The iistoricai Deveiopment of the Concert of Density and the Law of Sinking and Fioating. Manuscript in preparation.

APPENDIX A
 Interview

INTERVIEW
NAME \qquad M/F DATE \qquad

Ordering by weignt. size and density

Katerials

FIRST SEI: (All pieces are 1 cubic cm) 1. AL cuie/ 2. (5) AL cujes in a 'square'/ 3. (5)AL cubes in a tower / 4. (3)steel cubes/5. Copper cube/ 6. (7) rubjer cubes. On balance scale, 1 wood $=2$ rubber, $1 \mathrm{AL}=2$ wood, 1 steel $=3 \mathrm{AL}, 1$ copper $=\langle 1\rangle 2$ steel.

2ND SET: (Cyiinders are i.5 " in diameier) 6. 2" steel cyiinder (

 the objects in any way you like. here is a scale and a measuring tape that you might want to use to help you decide where to put tie OBJECTS.
A) WEEG:TT
dOES THIS RUB3ER CUBE HAVE WEIGHT? HOW DO YOU KXUQU?

If no: DOES THIS GROUP OF 10 RUBBER CUBES HAVE WEIGHT? HOW DO YOU KNOW THAT?
\qquad
I WOULD LIKE YOU TO PLACE THESE OBJECTS (first set) iN ORDER ACCORDING to their weight. put the heaviest one here and the ljghtest one fieke: if two thitug are the same, put them one in front of the other. (hote strategy)
\qquad

HOW DID YOU DECide to place them in that order?
\qquad

NOW I WOULD LIKE YOU TO ADD THESE OBJECTS (second see) TO THE GROUP ACCORDING TO THEIR WEIGHT. (Note strategy)
B) SIZE
 size. put the biggest one hiere and the smailest ole here; is two things are the same, put them one in frovit of the ofier.

HOW DID YOU DECIDE WHERE TO PLACE TiEm?
 ACCORDING TO THEIR SIRE
C) MATERIAL KINDS
 are made of
\qquad
\qquad
how did you decide which objects are made of the same material?
(Provice names \& correct sorting)
D) DENSITY
(Pre-interview oniy)
: iave you heard of the word density?

(Pre-interview veraion)

some objects are hade of a heavier kind of material tian otiers. i WOULD LIKE YOU TO PLACE THESE OBJECTS (inhst bet) ACCORJING TO THE heaviness of the kind of material they añe made of, that is accoiding to the density of the material. put the one witi tie heaviest (deneest) kind of material here and the one witi the lightest (least dense) iind of material here:is two things are the same, put them one zn frone of TiE OTHER.
(Post-interview vel:sion)
I WOULD LiKE YOU TO PLACE THESE OBJECTS (firsit set) ACCORDiNG TO TinE density of their materiais. put the one made of the densest yaterail here, and the one made of the least dense material here. er tiou añe yade of material with the same density, pu? them together.
how did you decide where to place them?

NOW I WOULD LIKE YOU TO ADD THESE OBJECTS (second sec) TO THE GROUE
[(Pre-int. oniy)
a according to the heaviness of the materials they are made ú, t:at
J.S*]
according to the density of theif material.
[Fost-interview only]
dO yOU THINK THERE IS A DIFiERENCE bETWEEN WEIGMT AND DENSIT?? WHAT IS THE DIFFERENCE?

Modeis of size, weiaht and densty

Katerials:

Three same size cylinders ($5^{\prime \prime}$ nigh): one wax(5 oz), one diu ($: 4$ oz), one steel(2.5 ib); one ateei cyiznder (2") equai in werght co A, one.

LET'S EXPLORE SOME OF YOUR IDEAS ABOUT WHht MAKES OBjECTS WEEZ̈: WHAT THEY DO. THIS OBJECT (iarge si 这) WEIGRS MOEE THAN TiIIS ONE (smail steel). HOW CAN THET BE?

THESE OBJECTE (same gize wax, Ai \& sceei) ARE ali tie same size bit they mave different wetgits. hón can that be?

What about the different materials makes inem have diffenemi wesurs:

THESE OBJECTS (steei \& Ai of́ equai welgit ARE jiffenexi sizes anu MADE OF DIFEERENT MATERIALS, BUT HAVE THE SAME WEIGBiTS. : OOW CAA TiAT $B E$?

WE HAVE BEEN TALKiNG ABOÜT SOME OF THE WAYS IN WHICh THESE 4 OBJECTS are difeerent and some of the ways in which they are the same. make up a picture code that shows what werve been talioing anjut souit ug fie PROPERTIES OE THESE OBJECTS). USENG YOUZ PICTURE CODE, DRAW A PICTURE OF THESE 4 ÜBJECTS.

What information do you have about each object in your picture?
how have you represented that information?
[Post-interview only]
NOW I'D LIKE YOU TO DRAW ANOTHER PICTURE OF THE FIVE OBJECTS. WITh Tite SAME KINDS OF INFORMATION WE'VE BEEN TALKING ABUUT, BUT THIS TiME i WANT YOUR PICTURE TO LOOK AS THOUGH YOU HAD USED THE COMPUTER PROGRAM TO DRAW IT.

DESCRIBE PICTURE: WHAT INFO? \qquad

HOW REPRESENTED? \qquad

DO YOU THINK THAT IS A USEEUL WAY? WHY?
[Pogt-int. only - DO YOU TliINK THESE ARE USEFUL? WiY? DO YOU THEXK ONE WAY IS MORE USEFUL THAN THE OTHER? WHY?j

Sinix and fioaz

Materiais:
Tui of water / Floating ojects: a) pine (1" thic0): ing piece, 7" x 4" \& gmall piece, $\left.1.5^{\prime \prime} \times 4^{\prime \prime}\right) ;$ b) soiidified glue: big piece, irreguiar, approx. $2.5^{\prime \prime} \times 3.5^{\prime \prime} \&$ tiny piece) / Sinikina objects: c) iignum vitae (1" thick): big piece, 7" x 4" \& amali piece, $1.5^{\prime \prime} \times$ f" $^{\prime \prime}$ d) pieces of ciay: j1g one, circuiar $2^{\prime \prime} \&$ tiny one.
you hay look at these objects and see iod they betave in tie water
\qquad
\qquad

What kinds of things float and wiat kinds of tiings sime
\qquad
\qquad

CAN YOU COME UP WITH A RULE THAT WOULD ALiOW US TO PREDICT WHaT WiLi FLOAT AND What will Sinik
\qquad

WOULD THIS BIG PIECE OF WAX (2" diameter \& 4.75" iength) FLOAT OR SINK? WKY?

Large $\mathrm{AL}\left(1.5^{\prime \prime}\right.$ diameter \& $8.5^{\prime \prime}$: ienath) guniken

WOULD THIS PAPER CLIP SINK OR FLOAT? WHY?

Katerials:

One glass with 5 oz of gait water (biue) and one giass with $50=$ of freah water (red); a piece of iucite (.5" diameter \& . 5 "

CAN YOU THINK Of a reason this ObJect is Eloating in oits ineujo AND NOT IN THAT ONE?
\qquad
\qquad

Post-incerview oniy

Materiais: A student drawing in whici densi̇y is inverseiy reiacec to the amount of alr holes
could we use this model of materials in tie same way that we mave been USING THE COMPUTER MODEL? WHY? HOW DO THEY COMPARE? DU YOU íike ONE way better than the other?

BGEORE YC: GO, we would like to kiow what you thougit of tif iessoks and the compiter prugrams. please be hunest because we reainy wate to
 LESSONS BETTER.

WHAT DID YOU Líke The best? \qquad

Wiat did you lixie least, or find boring? \qquad

ANY OTHER COMMENTS? \qquad

APPENDIX B
Teaching Sessions

$B-I$

FIRST CLASS (Introduction to the Computer Frogran)

I. WOrkgheet - HOW TO USE THIS PROGRAM
II. Worksheet - WORKSHEET PROBLEMS
(iave "hodeiing with Dots" progran ioaded on ail computers. Turn ofiz monitors, students face demo computer in front of room.)
I. REVIEW PROGRAM / Discussion / 5-10 mins.
A. How do you run or use the program?

You have to look at the screen,
it tells you what to do (move arrows, press space jar, etc)
it snows you a menu fron which to choose an opion by pyping the first leitier.

If you don't see what you want to do on the menu, then use che space bar or escape key (or asik the teacher)
B. What kinds of things can we do with the program?

Build tinings.
Change the objecis
Size, materiai

See them in another way
Filled in color, or seeing the grid and dots

Exchange objects, maike them trade piaces

Get data about the objects Size, number of doits, numier of ciots per biociz or size uni=
C. It's imporiant that you uncerstand the tinree ininu's of data. We wiil do some more probiens on this in a moment.

If I talik about the "dots" in an object, is it ciear what \bar{i} mean? Do I mean the totai number of dots. (the number of dors aitogether) or the dots per building biocir (the dots in each sıze unit?) We need to be clear about the difference.
D. Any questions.

II. FREE TIME / 5 rins.

Take a sew mirutes to play wirh the rogram, and review the way $1=$ woris. Then we will finish up the woriksneets. After the worinsheets, we wili discuss them and then move on to anotiner find of ačivity with the computer.
III. Discussion - WHat dues It mean to order?
A. - highest to lowest

- Lowest to highest
- first to last
- biggest to smaliest
B. - a "basis" for ordering
- how shali we order? according to ...
C. - what are some ways to order people in the elass?
- aiphaieticaliy, by height, by age...
iV. ORDEEMNG WORKSHEETS
A. We are handing back one of the worksinets from Wednesday (wuRKSHEET PROBLEMS). If you have started the worksinet alr,ady, or even $1 f$ you think you have finished it, piease listen because one of the problems has changed. Doubie checik your answers. Read aiong:

Instead of "what is g.aller about the first one than the last one?" It is: what was the "basis" for your ordering? You ordered them according to what? What did you look at, or pay aitention to when you ordered then or decided where to put them?
B. Hand out second worksheet (A FEW MORE ORDERING PROBLEMS) when first one is finished.
C. Go over the orderings from the first sheet.

1. Draw the pictures on the board from the 1st sheet.

Discuss orderings by size, totai dots, dots/size u.
Bring up other issises:

- some peopie said inches - inches measure length. Let's agree to use size units as standard measure for the total size of an object.
- what is the total size of the objects on the board?
- is it right to say one of chem has 3 dots, or shouid we say " 3 dots per biock" or " 3 dots per size unit"?
- if we change the materiai of this one, what will change? (dots per bioci AND torai dors)

2. Go over the second worksneet (have ansirers and cara ready)
3. Questione?
v. MODELiNG
A. Hiaif of you wiji do some problems with pennses, anc the ocher iait wili do prodiens with beads. Then we wili switcin.
(iand out materials - bags of 30 pennies $O R 25$ heads and 7 boxes for each group - and worissheet (MODELING WITi TiE COMPUTER). You wili do some problems and then think of a way to use the computer to draw a picture. Do you know what "represent" means? (For now, to show, to draw a picrure.)
B. See now it goes....when all are finished (or as each group finisies?) with these tasiss, expiain the next part..maike up a situacion that the computer couid represent or modei. Write it down. The computer can draw cercain ikinds of plctures, what in the reai worid couid chese be pictures for? Discuss answers.
C. Go on to the next part when ail ar: Ennisied. riold up tine equai size pieces of steei and aluminum. Rememier what these are? Show how mucis chey weigh on the scale (1 pound and $1 / 3$ li.)

Think of a way to represent these on the computer. Put one object in one window and the other in another window. Copy the screen onto the paper and write down (show on board) ALUMINUM under one and STEEL under che other.

Next time we will have a discussion about the work you did today and do some more activities.

THIRD CLASS (Discussion of Modeling)

I. Discussion of Modeiz - beads and pennies

Now we want to discuss how you have used the computers to represent the beads and penny problens and what makes sonething a good model (or representation) of these problens.
A. Looking over your papers, we saw two main ways people represented these problems. Let's see if we all understand these models and whether someone had a different model that we should acd to the chart.

1) First model

Read the problem; what information $1 s$ represenced in sine modei? Bow is it represented? (put on biacrioard)

What \# of boxes \# of beads beras/box

How
\# of squares (or si- units) total \# of dots \# dots/gize unit
note: essentialiy same type of code can be used for pennies:

```
# of piles # of squares
# of pennies total # of dots
pennies/file # iots/square
```

note: we have used a kind of code:

- : s it used accurately? (yっs)
- 13 it used consiatentiy? (yes)
- coes it have all the reievant infornation for tis: problem?
- does it encode coios: spacing of boxes; wny or why no: relevant?

2) Second modei

Read problem; what information is represented and how for chis model?

\# of beads	\# of dots; \# of squares
\# of boxess	\# of columns
beads/box	\# of squares/coiumn

- does this modei have same information as the other:
- 13 it used accurately?
- is it usec consistentiy?
- is one a becter modei of the probiem than the ocher? winy or why noz?
- do you think it $1 s$ usefui $=0$ make modeis ilize this? any advantages over gist words? any acvantages over the reai ching?

Dic someone else have yet another mode \downarrow they wouic ijie co share?
3. Mis : Models (posier shows Aizce represented witn Mociei i anr von with Kodel 2)
-. .. N this be a good inodel?

- ". s the problem? (for Aiice's pile used one ro.. 'tion; for John's pile anotiner: haven't used coce cons. Eently)
- other models for discussion (what's wrong)
- model where code is not used accurateiy
- model where all relevant information is not shown (Just \# of oiles, nothing eise)
II. KAPS (Small groups, each gets one map: Boston suivay, Boston screet. Boston area highway, Boston buildings souvenir)

These are ail maps of Boston. Kaps are something like modeis. Certain jincis of information are represented in certan ways. Let's now thiniz a dit more about what makes a good map of Boston.
A. - What might each map be good for?

- Why might we use a map instead of the real tining?
B. - Winat are the qualities of a good map? (put on board) (ensy to read or understand, accurate, consistent, has information needed for a given purpose, has quantitative info where needed)
C. - Look at your maps
- What kind of maps do you have?
- Report on WHAT info is on you. map and
- HOW that info is represented
- Does yours seem like a good map?
- Is info the same on aii maps? Represented the same way on different maps? Consistent within one map?
D. - Is one map a better map than the others? Why or why not?
E. - What are the limits of a map's usefuiness?
F. - Summarize characteristics of good map.

FOURTH CLASS (Modeling Real Materiais)

I. Construction oi compurer modei of steei and aiuminum
A. Remember when we asiked you to thinix of a way to use the compuzer $=0$ model two pieces of steel and aluminum. Many of you came up with some good ideas, but it was a hard problem. Today we wll think about it in a more step by step way.
B. Show lictle cuides made of aluminum.

- show one singie block and group of 3 biocks
- saik students to model this (let them do it - plcis same material, represent different sizes)
- discuss answer and agree on the size dimension anc how ro represent. Put corresponciance on the joarc.
- show iarge cuive mada of 8 small cuoes
- how to represent tiis? shape vs. size. iet them try.
- discuss - computer shows only one layer - how could we really know how many cubes there are? need to sacrifice shape. If computer were showing roons in a hotel, would be more important to show size than shape.
C. Show one cube of steel and one cube of aluminum. - how to represent these? agree to keep the estadiisned size dimension, and now add in next dimension, material Show on scale that steel cube is heavier than aluminum cube. (Later we will refer to density of material)
- try
- discuss - same size, different materiais. Discuss rationale for diffecent number of dots/size unit: heavier kind of materiel.
D. How much heavier is steel piece than aiuminum piece exactly? : Now many equal sime pieces of aiuminum wouid weigin the same as an equal piece of steel?
- show on scaie that 3 al. cubes dalance with 1 steei
- how can we represent that idea on the compurer?
- agree to let each dot stand for unit of weigit
- find the materiais on the computer winich wouid ailow us to have the samo number of dots in eacin ooject, ou= one object is 3 size units and the orher is i size unit
E. Discussion
- Go over tine three dimensions
- size, weight, density - put on joard witi corresponding ways of representing on computer
- Discuss difference between welght and denslcy
- Discuss objects chat weigh the sarne, but iave different densities
- Discuss crowdedness - (peopie $1 n$ noteis, cinips in chocolate chip cookies)
F. - Review how we mudeied sieej and aiuminum cubes
- now we wili mociel some jigger pieces oi steei and ai.
- sinow again the equal size cyiinciers oi steei anc aluminum and teii weights: steel=1 ib, $a i=i / 3$ ib.
- now many equai size pieces of aluminum are necessary to equal the weignt of the one piece oi steei? (3)
- try to model these cylinders on the computer (note they are tine game size, different weights)
- coliect copiei drawings

FIFTH CLASS (Review and Discussion of Usefuiness.of the kociei)
A. Review (5 mins)

- draw 3 ai. cuides and i steei cuide on the board
- remember tinat they balance
- review and write on board: size biociss - size
total dots - weight
dots/block - density (weight in a size unit, how much weight is packed into a size unit)
- put drawing of 3 al and 3 steel on board for comparison
- how does code inform us absut dengity?
- which coject would weigh more?
- how many groups of 3 ai wouid equal the group of 3 st in weight?
- showing relatively same size or twice, three i imes the size or weigin, not exactiy how big or exactiy ti.e welght
- Just need to be consistent
- might incorporate transition from smali ind. cuoes to jig solid piece
B. Just constructed models. Expiore. (10 mıns)
- here are some of the modeis you have drawn (poster on board) which do you think is the best model. why?
- if steel is represented with $3 \mathrm{~d} / \mathrm{c}$ when modeiing cuioes, why do you think it should be $5 \mathrm{~d} / \mathrm{c}$ when modeling large pieces?
- have we shown that the objects are the same size?
- have we shown the different weights?
- if 1 pound is represented with 30 dots, how m rots wouid represent $1 / 3$ pound?
- say which model we prefer and why (shows equai size and numeric weight reiationship i.e. 1:1/3)
- discussion of unit
- do you think this way of representing oijects is usefui? how?
C. Tell our purpose: (5 mins)
we know students have difficulty distinguishing weigit and densiEy anc understanding how they are ail incer-related.

Can anyone say something about the different between weight and density? Can you say something about the difference without rei.ying on the dots analogy? We can think of density as how much weight (matter) is pacired in=o a given size space.

Our purpose is t'כ develop a modei which clearly port:ays different xanos of quantities and shows how chey are inter-reiaced.
D. Look at units of size and welght: tiney are not the sane

- 1 dot; 1 square
- you can have things that are the sare size, dut different welghts (draw on board)
- model shows visually how that couid be.
- can thirk of this as more weight (maiter) packed into a given space
- ciraw three pictures on the board, just by jooking we can is heaviest, biggest, made of densest material

One thing our model might use is a key to knowing how much welght a dot stands for: one pound? one ounce?)

- notice
- both the size and weight of an object increase as you add more tc it
- adding more squares necessitates increase in both size and weight
- what stays the SAME?
- density. is that surprising?
- if I keep adding building blocks, does the total weight change (yes, increases)
- density is characteristic of the material rather chan of the who:e object
- is the density the same here as there?
- how do we know density is constant throughout the materiai?
- density is constant, and is the same chroughout the whole oojec:.
- the density is the same on the top and on the bocton
- the denaity of the material is the same whecher we take a iitcie piece or a big piece show three pieces of aluminum (small, med. large) - them around the roon - is the density of the material the same in ali three pieces?
- how could you convince yourselves (prove to selves) the naterial in a little piece of aluminum has the same denaicy as that in a large piece - compare to same \# of dots/zize unir.
- (break them up? what if we took the same size pieces?)
- de visstration with clay
- one litttle piece of ciay has a certain densicy (compare wich saaii piece of steel - which weigis more? steei. which is denser? steci.)
- does large piece have same density?
- what has changed? the weight and the size. compare to computer program.
- show very large piece of clay. it is heavier than the inzie piece of steel, but it is not as dense as the steei
E. Let's also compare our models to some of yours developed in the pre-interview to see if it serves this specific purpose jecter than your own models
- we asked you in the individuai sessions to you i.. the expiain wiy objects waign what they do. Initiai questioning reveaied cna= most of you thought
- the size of an object
- the kind of materiai an object is made of both affected izs weight
- some aaid color, hardness

And then to draw a picture that would snow some of your icieas abour the ways in which certain objects were the same and different with respec: co their materiai, size and welght.
F. First iet's discuss what it was abour size and materiai thac couic affect the weight of objects
-two objects made of same material, but different sizes more oi the material, it would weigh more

- two objects the same size made of different materials
- some ideas
- some material is just a heavier kind of stuff (density) - some materials are darier and therefore heavier (vulcanite tegt: compare weights of same size rods made of dark coior rubber with ilgin coior aluminum: aluminum is heavier and denser)
- some materiais are harier and therefore heavier (iead strip conparec to steei strip. Lead is denser and heavier, yet is soit and pieabiel
- some objects were empty and some fuil convince soind aii che way chrough)
- because some objects were made of heavier ixind of marerials, you could have a littie piece of heavy materiai that was equai in weigit to a large piece of iight material (the steei and ai in pre-in=)
G. Let's looir at how size is represented
- in our model- squares are a UNiT areasure of size
- in your models - heignt of object
- do you thinik that these are equivaient - or tiai one aas certain advantages
- consider objects of different shapes
- suppose we wanted to know how much bigger one was than another: units make comparisons easier.
H. Many of you wanted to represent materiai in some way.
(Poster on board)
- go through difierent reps of material- coior, intensity of siacing. use
- how do these reps teli us something about weight of objeces?
- about the distribution of weight
- look at weignt poster
- is there an advantiage to one oi the modeis?
- uses?
- our purpose (quantification, relationships, learning tooi)
I. Conclude with discussing relationship of size and materiai to welght
- if we know the size and material, can we predict welght (winch modejs allow us to do that)
- (ex. material has $3 \mathrm{~d} / \mathrm{su}$ and is 5 su . what is weignt?)
- d/c times size $=$ weight
- if we knew that this (on board) welgned 40 units anc it had a size oi 10, what would its density be?
- weight/size $=$ density
- more exampies on the board, then asj veribaily (if an object weigned 100 pounds and was 50 size unics, what would its densicy be? (2lio/size unit))

SIXTH CLASS (Individuai Sessions - 2 studentis)

Name(s) \qquad Date \qquad
I. A. Construct the foliowing: Chave data showing with weignt units and wt/sz units)
(A): height=4 width=1 $d / s u=1$
(B): height=4
width=i
$\mathrm{d} / \mathrm{su}=2$

Give: paiance scaie, 5 wood rods, 3 eacn of vuicanize, orass, a_{i}.
Ask: I've represented 2 of these rods on the screen. Can you figure out which 2 I've represented?
\qquad

\qquad
\qquad
(hints: Can you tell me something about their weights? riow mucn more does B weigh than A ? How many A 's would de equal in weight to one B ?)
B. Ask: How could you represent an aluminum rod on the screen in tine tinird window? Can you use the wood rods to heip you figure it out?
\qquad

(nints: How much neavier is the aluminum rod tinan a wood rod? そow many wood pleces this size are equai in weight to one aiumınum plece tais size?)
C. Give: piece of paper and pencil

Ask: If we weren't limited to five weight units per size unit on the computer, how would you represent this piece of brass? Can you use the aluminum pieces to help you figure it out?
(hints: Is it the same size as the otner rocis? is it the same welgat as the other rods? How many aluminum rods are equai in weignt to one orass rod? How is the weignt distributed?)
II. A. Looi at oijjects on the screen that have densi=y racio i:2

Ask: How couid you make these two objects weigi the same amoun= dy changing their size?
\qquad

What changed?
What stayed the same?
Compare with real ojects and guide to seeing that task couid be accomplished by doubiing amount of one $O R$ halving amount of otier.
B. Does the density change if we cut the object in haif?

What if we cut it in half again?

Is the density of the material the same for a plece cut off the top, cut off the bottom, on a plece cut from the middie?

Can you imagine the smallest little dit of aiuminum and the smailest litttle bit of brass?

Are they the same size in your mind? \qquad

Does one weigh more than the other?

Is one made of denser material than the other?

> Is the density of the material used for that tiny bit of orass the same density of the material used for this brass rod, and this brass weight?
III. A. Density is a property of materiai that stays the same, no matter how much of the material we have. it is how much weight is pacired into a certain size space. We can say that density 13 a measure of tie incensiry of weight. Let's compare that idea with some other examples of intensity.
B. Let's thinik adout incensǐy of coior. :iere are inree containers oí water. I'll put one drop of coloring in one, tiree drops in the nexz, and 6 drops in the next.

Which has the greaiest iniensity of coior?

Does it make a difference if I iooix ai the water on top or on tie boitom or in the middile... Does the intensity of the coior ciance?

What if I poured half of this coiored wa亡er out. woujd the intensity of the color change?

What if I took just a litile drop of the water....wouic the intensity of the color change?

The intensity of the coior, just line the censity of a maseriai is the same throughout, and is the same in a smaii gampie as in a oig sample.

If we maize the comparison of intensity of coior to intensity of weight, that is density, which cup would correspond to tiae censesi mačerial?

If I take two cups of water the same coior and acid them cogetier, will the coior change?
(Try it) Compare this to material: Even with more materiai, tize density doesn't change.

Can you thinix of any other exampies of incensity or paciring?

If gum is 35 cents a pack and you buy one pacik, and you (oخizer) juy ten packs, who has spent more per pack? who has spent nore money in ali?

Sweetness: different amounts of sugar in equal amounts of warer. Each cup separaceiy, tastes the same aii tie way through.
I. In a littie while we wiil use the computer to learn goout sinining and fioating. But first:

We will order some objects according to the density of the materials they are made of. (BRASS, STEEi. ALUMINUM, WOOD: have cubes of each) Show the process:

First review:
Bave balance scaie and show smail brass cuide and smaij ajumanum rod. Piace on scaie anc asiz:

- can you teli which is ieavier?
- can you teii whicn is made of denser material?

Then show equal size pieces of brass and aiuminum anc pu:
them on the scale.

- which is heavier?
- wnich is made of denser materiai?

Summary:
To find which is denser: take equal size pieces and we: gh them. it they are the same size, then the neavjer one is made of censer materiai. Once you krow that one kind of material is denser than another, it doesn' $=$ matter how much of it you have, it will aiways be denser tian the other.
II. Establish order by weighing equal size pieces. Write on board:
(densest) BRASS STEEL ALUMINUM WOOD (least dense)
III. How about liquids?

- Show two identical containers witin same amounts of 01 i and water
- Where would thege go in the orcier? how can we de sure?
- Weigh equal amounts
- Oii feeis thicker, yet its not denser.
- How to compare liçuids and solids
- Have equal size piece of wood, weigh it ajong with contalner, compare to weight of iiquid in container.
- write on board where oil and water go in the order
- Pass around the mystery container (seajed and wrapped contamer of mercury - warn students to be carefui)
- What is surprising? That it is small and heavy for its size?
- It weigns one pound. Compare to one.pound of sieel.
- It weighs the same, yet is smaller, therefore it is denser than steel.
- Do you know what the material is? It is mercury. Mercury is a liquid. It is used in thermometers. Read about $1=$ for next tine. Some peopie say solids are always censer Ehan ilculds. is that true? No.
Snow order on board: MERCURY BRASS STEEL ALUMINGM WATER OEL WUSD
IV. As you remember, we asied you some time ago about different objeces: which sink and which sloat?

Before we continue experiments with real liquicis anc soiid ooseczs - we want you to try out a program that lets you modei tine iicuids anc ine objects and perform experiments on the screen.

We will briefly show you how the progran works up untii the "experiment". (Show how program works on demo computer in front of room)

Go and use the progran now to see if you can come up with a ruie: If we assume that the program represents the reai worid correctiy, what is the ruie that will let us predict when a given ojject will float and when will it sink? Each of you will write your answer and then we will do some real experiments.

Hand out worissneets which say:
AN OBJECT WILL SINK IN A LIQUID IF:

AN OBJECT WILL FLOAT IN A LIQUID IF:
V. Collect the answers and discuss oriefly. Questions:

What nappens when oil and waier are mixed togetiner?
Do all peopie fioat?

At the end of the last class, we did some experiments with tie computer and tried to come up with a general ruie that would teli us when sn object will sink and when it will float.

What do scientists do? Make experiments, figure things our.... We all notice things around us. Scientists notice things too and then try to figure out a rule which will explain why certain things nappen or they try to figure out a general rule to use in orcer to predict what wi:l happen in certain situations. 'ihey make experiments to test tieır ruies or to heip them discover a ruie.

Examples: You are a scientist and you notice tiar a duy in Eebruary 13 shorter than a day in Aprii. (Draw a littie diagram on the buard) A day in April is shorter than a day in June, A day in June 13 longer than a day in October and a day in October ia ionger than a day in December. You make a general rule about the length of all the days in a year. Does someone know the rule? Everyciay is longer than the one before untii June 2i, then they scart getting shorter again until Decenioer 21.) fow can we test the suie? Does the rule let us make predictions that come true? (See if it 13 correct for the next year)
if you notice that 5 jears from now, a day in February is very iong. then you would have to change your rule. Scientific rules can change, but many of the last for a long time, often hundreds or thousands of years. People uaed to think that the earth went around the sun. We now know chat the sun goes around the earth. The rule that we use now 13 about 500 yesrs old. (Copernicus)

We noticed that some tinings sink and some things fioac anc we want co finc a generai rule that wili aiiow us to precict whether an objece we have never seen (or tried, tested) before will sink or float.

There were a lot of iceas.
Discuss ruies:

1) It depends on the COLOR

- show rubber cuie and vuicanite rod in water as counterexample, also hard glue and chalk

2) HEAVY things sink, LIGHT things float

- show big piece of wood and smali piece of ciay in water as counterexampie

Then some of you thought it maght have to do with the weight in the density of the object. Still others thought it hac something to to with the weight or densicy of an odject COMPARED to the ilquad.

The rule that the computer uses is the same ruie tiat appiles co rea: objects. We will spend a litrie more time booking for the rule. To naine
it ciearer, we wili divide the experıments. First we wiii oniy be concerned with SiNixiNG. When wili an object ginis?

Hand out worksneets - FiNid SOME SINKING OBJECTS
Write down the kind of object, the kind of iiquid. You wiii need to get some data.

Discussion while orher progran (Sink tine Raft) is being ioaded.

What are some examples?
Include $3 / 2$ (weights are 72/96) and 5/4 (weights are 120/192)
Inciude $2 / 1$ (weights 42/48) The ooject weigis a iitije.
Do you thinis it has more to do with the welght or ine densicy?
Do you think it has more co do with tine density of tine objec or the density compared to the liquid?

The next progran wili let you do a few more experiments... you wijl be aile to change the size and thereby the weight of the oojects to see if that will effect whether it sinks or floats.
we have another program for you to try, that wiil let you change she size of the objects you drop into liquids. Up uncii now aij the odeces were the same size. iise the program to see $1 \dot{f}$ changing the size will make a difference in whether the object sinjs or ficats. See if by adding more and more material and thereby increasing the weight of an ooject will have an effect. Or taking material away, making the object lighter and inghter will have an effect. Write some examples on the worksheet.

Hand out worksheets - CREATE A GREEN OBJECT IN WHITE LIQUED

Discuss.
Come to conciusion that in order for an object $\mathbf{~ c o ~ i o a z . ~ E n e ~ c e n s i z y ~}$ of ics material sin uid de less than the densicy of tie ilquid.

Questions for fun:

Archinedes' puzzle - Sinow that a iarge plece of ciay giniks. Then show two smalier pieces of ciay. (ne sinks and one fioats. is one a zake? Why? (One has a piece of cork hidden inside)

Balloons - Why do you tinink that dalloons fiiled with heiium fioait? (Helium is less dense than reguiar air)

APPENDIX C
Worksheets

How touse this orogram

In order to do some thing on the screen there are only two things you need to tell the computer：

1）WHERE TO DO THINGS．
2）ШНяT TO $D 0$.

WHERE？

You choose where to work by moying the window frame．There are THREE work areas．

Fix
Which window did you choose？（1st／Left，2nd／Middle，3rd／hight）

You can change your mind and work somewhere else．

兴为为

 PRESS THE ESCAPE KEY．Moue the frame to the middle mindow and press the space bar．Your screen should look like this：

Еふにクシャッシ

ШHAT TO DO？

You are looking at a menu．There will be a few menus in this program． You pick an option from a menu by typing in the first letter of the word．

Bugna

Now you will build an object．

平米米
 TYPE IN THE LETTER＂B＂FOR＂BUILD．＂

The screen should look like this：

Does it？ \qquad
In order to build an object，we need to choose a＂material＂．You see a menu with building blocks of different materials．

水执执

> ‘PRESS "P" FOR "PURPLE." .

The first building block should appear in the window．
How many dots are in the building block？ \qquad
＊＊ \mathfrak{c}_{*}
NOW USE THE ARROW KEYS TO CHANGE THE OBJECT＇S SIZE．
承水执
USE ALL THE ARROW KEYS TO MAKE THE OBJECT BIGGER AND SMALLER．
＊＊＊
MAKE THE BIGGEST POSSIBLE OBJECT．
Describe the object you just built．（How tall，how wide，how many blocks？）
*** PRESS THE SPACE BAR.
This saves the object on the screen. CONGRATULATIONS!! You haye just completed the first object on the screen.
** $*^{*}$ MOVE THE FRAME TO THI: THIRD WINDOW.
****BULD THE SMALLEST ORANGE OBJECT. SAVE IT.
Describe it. (How many dots does it have? How big is it?)
*林护 BUILD AN OBJECT IN THE FIRST WINDOW THAT HAS A TOTAL OF 12 BLOCKE. THEN COPY (DRAW) THE OBJECT ON THIS PAPER.

If some thing went wrong try these:

A) Press space bar
B) Press ESC
C) Call the Teacher
D) Glye the computer a hug.

CHABE

You can chainge objects that are on the screen．You can change their SIZE or change the MATERIAL that they are made of．You can also ERASE them completely．

水水执
MOVE THE FRAME ONTO THE LARGEST O\＆JECT ON THE SCREEN．
What kind of building blocks does it have？ \qquad
Now we＇ll change the material to＂Blue．＂＂Elue＂building blocks have five dots in them．
> ＊小 \mathfrak{s}^{6}
> press the space bar to see the meru．
> 水水
> TYPE＂C＂FOR＂CHANGE＂．
> You should now see this menu：

$$
\text { MEちEri引I } \quad \text { EiエE ErEミE et.ject }
$$

＊＊＊ TYPE＂M＂FOR＂MATERIAL．＂
＊＊w^{*} TYPE＂B＂FOR＂BLUE．＂

What happened？ \qquad
＊＊＊
FIND THE SMALL ORANGE OBJECT OM YOUR SCREEN．（orange material has 4 dots in each building block．）
＊： ＊$_{\text {HOW CHAMGE THE ORANGE OBJECT＇S MATERIAL TO GREEN．}}$

How many dots are in a green building block？

Now weill change the size of this object.

TYPE "C" FOR "CHANGE."
****TYP "S" FOR "SIZE."
**
USE THE ARROW KEYS TO MAKE THE OBJECT 4 BLOCKS TALL AND 2 BLOCKS WIDE.
** press the space bar to save it.

Draw a copy of this object here on the paper.

Change the objects on your screen, one by one, until the screen looks like this:

| $: 1: 1: 1: 1: 1: 1: 1: 1: 1$ |
| :--- | :--- |

Make sure your objects look exactly like the one's above before you go on.

Now erase the middle object.

* $丶^{*}$ *

MOVE THE FRAME TO THE MIDDLE OB.JECT AND PRESS THE SPACE bar. ** $*^{*}$

TYPE "C" FOR "CHANGE."
110

ERGMANGE

You can make two objects trade places on the screen by using the "Exchange" command. Exchange the objects in the first and third windows:
**:* MOVE THE FRAME TO THE FIRST WINDOW.

*** pRESS THE SPACE BAR.

****TYPE "E" FOR "EXCHANGE."
*** mOVE THE FRAME TO THE THIRD wimDOW.
*** PRESS THE SPACE BAR.

TOETM/TIDE

All objects can be seen in two ways. One way is to see the building blocks. The other way is to see the object in a solid color.
*** MOVE THE FRAME TO THE ORJECT IN THE FIRST WINDOW AND PRESS THE SPACE BAR.
*** TYPE "Y" OR "H" FOR "VIEW/HIDE."

What happened?

Use the "Uiew/Hide" option on the object in the third window.
What happened?
Change an object's material while it is in color.
What was the old material? \qquad
what did you change it to?

TOTH

The computer will do some counting for you．
First make the following objects on your screen：

Look at the object in the third window．
How many building blocks does it have？
How many dots does it have altogether？
See if you got the same numbers that the computer got：
＊氺徒MOVE THE FRAME TOTHE THIRD WIMDOW．
＊＊＊
PRESS THE SPACE BAR．
＊隶出
TYPE＂D＂FOR＂DATA＂
You should now see the＂Data＂menu．

$$
\begin{aligned}
& \text { units coritiruse }
\end{aligned}
$$

＊＊＊＂TYPE＂S＂TO SEE THE＂SIZE＂OF YOUR OBJECT．
The size is the number of building blocks．Each block is one size unit．
The object in the third window has size units． Is that what you counted？
＊秘米 TYPE T＂TO SEE THE TOTAL NUMBER OF DOTS＊IN YOUR OBJECT．
The object in the third window has \qquad dots total．

Is that what you counted？
**** TYPE -D TO SEE HOW MANY DOTS ARE IN EACH BUILDING BLOCK.
This is the number of dots per block, or the number of dots per size unit.

Get all the data for the other objects on the screen. Which object has the most dots? \qquad
Watch what happens to the data as you change an object's material. Urite down the data for the object in the middle window on this paper.

Change the material of the object in the middle window.
Urite down the new data.

What changed? \qquad
What stayed the same?
Now change this object's size.
Urite down the data.

What changed this time? \qquad
What stayed the same? \qquad

CONGRATULATIONSIA

YOU ARE NOW A CERTIFIEDPROGRAM-USER.

MORXSHEET PRDBLEMS

CREATE THE FOLLOWING ON THE SCREEN.

B
get all the data.
Use the "Exchange" command to put these objects in an order from lowest to highest in some way.

SHOW HOW YOU HRUE ORDERED THE OB.JECTS (COPY THEM FROM THE SCREEN OMTO THIS PAPER)

What is smaller about the first one than the last one?

DID YOU PIT THEM IN ORDER ACCORDING TO THEIR SIZE?

If not, use the "Exchange" command to order them by their size.
COPY THE ORDERED OBJECTS FROM THE SCREEN ONTO THIS PAPER.

HAVE YOU ORDERED THE OBJECTS BY THEIR TOTAL NUMEER OF DUTS YET?

If not, do that now, and copy the new ordering on the paper.

FINALLY, HAYE YOU ORDERED THE ORJECTS ACCDRDING TO HOW "CROWDED" THE BUILDING BLOCKS ARE? (THAT IS ACCORDING TO THE NUMEER DF DOTS PER SIZE UNIT)

If not, do that now and copy the objects in order on the paper.

AND MIO, FOR SOMETHING COMPLETELY DIFFERENT:
HERE ARE THREE DATA WINDOWS:

CREATE THE OBJECTS THAT HAVE THIS DATA.

COPY THEM ON THE BACK OF THIS PAPER.

NAME DATE \qquad

A FEU MORE ORDERING PROBLEMS (Lowest to fighrest)

CREATE THE FOLLOWING ON THE SCREEN:

USE THE "EXCHANGE" COMMAND TO ORDER THESE BY THEIR S12818.
(hint: Let the computer do some counting for you. Use the data option.)

COPY THE ORDERED OBJECTS FROM THE SCGEEN ONTO THIS PAPER.

NOW ORDER THE OBJECTS BY THEIR TTTYA高 NTMBRE ©R DOTHS.

COPY THE ORDERED OBJECTS HERE:

NAME \qquad

FINALLY, ORDER THE OBJECTS ACCORDING TO HOV "GAOMDRD' THE BUILDING BLOCXS ARE, that is, eccording to the aumber of dOBS $\rho \mathcal{O}$

COPYYOUR ORDEAED OBJECTS HEAE:
\qquad

MODELING WITH THE COMPUTER

A. Alice has 4 piles of pennies with inree pennies per pile. How many pennies does Alice have altogether? \qquad
John has 6 piles of pennies with 2 pennies per pile. Arrange the piles of pennies on your desk.

Does one of them have more pennies altogetner?

Now use the computer.
In one window, represent Alice's piles of pennies. In another window, represent Jotin's piles of pennies.

Copy the computer screen on this paper.
B. Now Alice has 10 beads which she wants to arrange in two boxes with the same number of beads in each box. How many beads would she have in .each box? \qquad
John has 15 beads which he wants to arrange in 5 groups of equal size. Put the beads in the boxes the way John wants them.

Does one person have more beads in a box than another? \qquad

Now use the computer to model this problem.
In one window, show how Alice's beads are arranged.
In another window, show how John's beads are arranged.
Copy your screen on the paper.

Make up another real life problem which can be modeled on the computer.

1. Material of OBJECT:

Material of LIQUID:
IS THE OBUECT HEAVIER (MORE TOTAL WEIGHT) THAN THE LIQUID? \qquad
IS THE ORUECT DENSER (MORE WEIGHT PER SIZE UNIT) THAN THE LIQUID? \qquad
2. Material of OBJECT: Material of LIQUID: \qquad
IS THE OBJECT HEAVIER (MORE TOTAL WEIGHT) THAN THE LIQUID? \qquad
IS THE OBJECT DENSER (MORE WEIGHT PER SIZE UNIT) THAN THE LIQUID? \qquad
$\&$
3. Material of OBJECT:

Material of LIQUID:
IS THE ObJECT HEAVIER (MORE TOTAL WEIGHT) THAN THE LIQUID? \qquad
IS THE OBJECT DENSER (MORE WEIGHT PER SIZE UNIT) THAN THE LIQUID?

IS IT POSS' 'LE TO FIND AN OBJECT WHICH WEIGHS LESS THAN THE LIQUID, BUT STILL SINKS? (IF SO, WHAT MATERIALS ARE THEY MADE FROM?)

IS IT POSSIBLE TO FIND AN OḂJECT THAT IS LESS DENSE THAN THE LIQUID, BUT STILL SINKS? (IF SO, WHAT MATERIALS ARE THEY MADE FROM?)
\qquad
"CREAJE A GREEN OBJECT IN WHLTE LTOULD.
DOES IT SINK OR FLOAT?
**MAKE THLE OBJERT AS BLa , 28 you caN.
DOES IT SINK OR FLOAT?

** MOAKE THE OBJEET AS SOLALL AS yOU CAN.

DOES IT SINK OR FLOAT?

DOES CHANGING THE SIIE AFFECT WHETHER IT SINKS OR FLOATS?

WHFN YOU MADE THE OBJECT BIGGER OR SMALLER, DID ITS WEIGHT CHANGE?

WHEN YOU MAKE AN OBJECT BIGGER OR SMALLER DOES THE DENSITY OF ITS MATERIAL CHANGE?
***WHEN YOU ADD OR REMOVE MATERIAL YOU CHANGE THE SIZE AND THE WEIGHT OF THE ORJECT, BUT NOT THE DENSITY OF THE MATERIAL. DID CHANGING THE SIZE AND WEIGHT HAVE AN EFFECT ON WHETHER IT SANK OR FLOATED?
***THINK 0F anotfler way ti make the object float galailn.

HOW DIE SOU DO IT?

DO ALL OBJECTS FLOAT IN WHITE LIQUID?
FIND SOME THAT DO.

CAN YOU FIND SOME THAT DON'T?

DO ALL OBJECTS FLOAT IN PURPLE LIQUID?

WHICH DO AND WHICH DON'T?
 oteer ciplid.

[^0]: *

 Reproductions supplied by EDRS are the best that can be made from the original document.

[^1]: 1 Daphna Kipman, Joseph Snir, and Judah Schwartz worked together in the initial stages of developing the software. Joseph Snir subsequentiy extended the software to do simulations of sinking and floating experiments.

